BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 16833446)

  • 21. Difference frequency generation spectroscopy as a vibrational optical activity measurement tool.
    Cheon S; Cho M
    J Phys Chem A; 2009 Mar; 113(11):2438-45. PubMed ID: 19228046
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effective molecular polarizabilities and crystal refractive indices estimated from x-ray diffraction data.
    Whitten AE; Jayatilaka D; Spackman MA
    J Chem Phys; 2006 Nov; 125(17):174505. PubMed ID: 17100452
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient method for the calculation of time- and frequency-resolved four-wave mixing signals and its application to photon-echo spectroscopy.
    Gelin MF; Egorova D; Domcke W
    J Chem Phys; 2005 Oct; 123(16):164112. PubMed ID: 16268686
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selection rules and symmetry relations for four-wave mixing measurements of uniaxial assemblies.
    Davis RP; Moad AJ; Goeken GS; Wampler RD; Simpson GJ
    J Phys Chem B; 2008 May; 112(18):5834-48. PubMed ID: 18419167
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mid-infrared second-order susceptibility of alpha-quartz and its application to visible-infrared surface sum-frequency spectroscopy.
    Hore DK; Hamamoto MY; Richmond GL
    J Chem Phys; 2004 Dec; 121(24):12589-94. PubMed ID: 15606281
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-dimensional optical three-pulse photon echo spectroscopy. I. Nonperturbative approach to the calculation of spectra.
    Mancal T; Pisliakov AV; Fleming GR
    J Chem Phys; 2006 Jun; 124(23):234504. PubMed ID: 16821926
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Resolution properties of nonlinear optical microscopy.
    Fukutake N
    J Opt Soc Am A Opt Image Sci Vis; 2010 Jul; 27(7):1701-7. PubMed ID: 20596159
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatic generation of force fields and property surfaces for use in variational vibrational calculations of anharmonic vibrational energies and zero-point vibrational averaged properties.
    Kongsted J; Christiansen O
    J Chem Phys; 2006 Sep; 125(12):124108. PubMed ID: 17014167
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vibrational and thermal effects on the dipole polarizability of methane and carbon tetrachloride from vibrational structure calculations.
    Kongsted J; Christiansen O
    J Chem Phys; 2007 Oct; 127(15):154315. PubMed ID: 17949157
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resonance hyper-Raman scattering of fullerene C60 microcrystals.
    Ikeda K; Uosaki K
    J Phys Chem A; 2008 Feb; 112(5):790-3. PubMed ID: 18186621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kramers-Kronig relations and sum rules in nonlinear optical spectroscopy.
    Peiponen KE; Lucarini V; Saarinen JJ; Vartiainen E
    Appl Spectrosc; 2004 May; 58(5):499-509. PubMed ID: 15165324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface enhanced Raman optical activity of molecules on orientationally averaged substrates: theory of electromagnetic effects.
    Janesko BG; Scuseria GE
    J Chem Phys; 2006 Sep; 125(12):124704. PubMed ID: 17014197
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-time time-dependent density functional theory approach for frequency-dependent nonlinear optical response in photonic molecules.
    Takimoto Y; Vila FD; Rehr JJ
    J Chem Phys; 2007 Oct; 127(15):154114. PubMed ID: 17949139
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Second-harmonic generation in GFP-like proteins.
    Asselberghs I; Flors C; Ferrighi L; Botek E; Champagne B; Mizuno H; Ando R; Miyawaki A; Hofkens J; Van der Auweraer M; Clays K
    J Am Chem Soc; 2008 Nov; 130(46):15713-9. PubMed ID: 18950177
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hyperpolarizabilities for the one-dimensional infinite single-electron periodic systems. I. Analytical solutions under dipole-dipole correlations.
    Jiang S; Xu M
    J Chem Phys; 2005 Aug; 123(6):64901. PubMed ID: 16122343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vibronic coupling simulations for linear and nonlinear optical processes: theory.
    Silverstein DW; Jensen L
    J Chem Phys; 2012 Feb; 136(6):064111. PubMed ID: 22360173
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochemical, spectroelectrochemical, and molecular quadratic and cubic nonlinear optical properties of alkynylruthenium dendrimers.
    Cifuentes MP; Powell CE; Morrall JP; McDonagh AM; Lucas NT; Humphrey MG; Samoc M; Houbrechts S; Asselberghs I; Clays K; Persoons A; Isoshima T
    J Am Chem Soc; 2006 Aug; 128(33):10819-32. PubMed ID: 16910677
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonlinear optical response and ultrafast dynamics in C60.
    Zhang GP; Sun X; George TF
    J Phys Chem A; 2009 Feb; 113(7):1175-88. PubMed ID: 19170622
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tailoring transition metal complexes for nonlinear optics applications. 2. A theoretical investigation of the second-order nonlinear optical properties of M(CO)(5)L complexes (M = Cr, W; L = Py, PyCHO, Pyz, PyzBF(3), BPE, BPEBF(3)).
    Bruschi M; Fantucci P; Pizzotti M
    J Phys Chem A; 2005 Oct; 109(42):9637-45. PubMed ID: 16866417
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonlinear optical properties of tetrapyrazinoporphyrazinato indium chloride complexes due to excited-state absorption processes.
    Dini D; Hanack M; Meneghetti M
    J Phys Chem B; 2005 Jul; 109(26):12691-6. PubMed ID: 16852571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.