BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 16833570)

  • 1. Multilayer formulation of the fragment molecular orbital method (FMO).
    Fedorov DG; Ishida T; Kitaura K
    J Phys Chem A; 2005 Mar; 109(11):2638-46. PubMed ID: 16833570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fragment molecular orbital method for geometry optimizations of polypeptides and proteins.
    Fedorov DG; Ishida T; Uebayasi M; Kitaura K
    J Phys Chem A; 2007 Apr; 111(14):2722-32. PubMed ID: 17388363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications.
    Nagata T; Fedorov DG; Kitaura K; Gordon MS
    J Chem Phys; 2009 Jul; 131(2):024101. PubMed ID: 19603964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled-cluster theory based upon the fragment molecular-orbital method.
    Fedorov DG; Kitaura K
    J Chem Phys; 2005 Oct; 123(13):134103. PubMed ID: 16223271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular recognition mechanism of FK506 binding protein: an all-electron fragment molecular orbital study.
    Nakanishi I; Fedorov DG; Kitaura K
    Proteins; 2007 Jul; 68(1):145-58. PubMed ID: 17387719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent bond fragmentation suitable to describe solids in the fragment molecular orbital method.
    Fedorov DG; Jensen JH; Deka RC; Kitaura K
    J Phys Chem A; 2008 Nov; 112(46):11808-16. PubMed ID: 18942816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate calculation of the heats of formation for large main group compounds with spin-component scaled MP2 methods.
    Grimme S
    J Phys Chem A; 2005 Apr; 109(13):3067-77. PubMed ID: 16833631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of three-body terms in the fragment molecular orbital method.
    Fedorov DG; Kitaura K
    J Chem Phys; 2004 Apr; 120(15):6832-40. PubMed ID: 15267582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiconfiguration self-consistent-field theory based upon the fragment molecular orbital method.
    Fedorov DG; Kitaura K
    J Chem Phys; 2005 Feb; 122(5):54108. PubMed ID: 15740311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO).
    Fedorov DG; Kitaura K; Li H; Jensen JH; Gordon MS
    J Comput Chem; 2006 Jun; 27(8):976-85. PubMed ID: 16604514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation energies of pericyclic reactions: performance of DFT, MP2, and CBS-QB3 methods for the prediction of activation barriers and reaction energetics of 1,3-dipolar cycloadditions, and revised activation enthalpies for a standard set of hydrocarbon pericyclic reactions.
    Ess DH; Houk KN
    J Phys Chem A; 2005 Oct; 109(42):9542-53. PubMed ID: 16866406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method.
    Fedorov DG; Kitaura K
    J Chem Phys; 2004 Aug; 121(6):2483-90. PubMed ID: 15281845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the keto-enol tautomerization of malonaldehyde: an effective fragment potential study.
    Freitag MA; Pruden TL; Moody DR; Parker JT; Fallet M
    J Phys Chem A; 2007 Mar; 111(9):1659-66. PubMed ID: 17298039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective fragment molecular orbital method: a merger of the effective fragment potential and fragment molecular orbital methods.
    Steinmann C; Fedorov DG; Jensen JH
    J Phys Chem A; 2010 Aug; 114(33):8705-12. PubMed ID: 20446697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation.
    Li H; Fedorov DG; Nagata T; Kitaura K; Jensen JH; Gordon MS
    J Comput Chem; 2010 Mar; 31(4):778-90. PubMed ID: 19569184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diels-Alder reaction between cyclopentadiene and C60: an analysis of the performance of the ONIOM method for the study of chemical reactivity in fullerenes and nanotubes.
    Osuna S; Morera J; Cases M; Morokuma K; Solà M
    J Phys Chem A; 2009 Sep; 113(35):9721-6. PubMed ID: 19663407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment and acceleration of binding energy calculations for protein-ligand complexes by the fragment molecular orbital method.
    Otsuka T; Okimoto N; Taiji M
    J Comput Chem; 2015 Nov; 36(30):2209-18. PubMed ID: 26400829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An assessment of theoretical procedures for predicting the thermochemistry and kinetics of hydrogen abstraction by methyl radical from benzene.
    Hemelsoet K; Moran D; Van Speybroeck V; Waroquier M; Radom L
    J Phys Chem A; 2006 Jul; 110(28):8942-51. PubMed ID: 16836458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular tailoring approach in conjunction with MP2 and Ri-MP2 codes: A comparison with fragment molecular orbital method.
    Rahalkar AP; Katouda M; Gadre SR; Nagase S
    J Comput Chem; 2010 Oct; 31(13):2405-18. PubMed ID: 20652984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermochemistry, bond energies, and internal rotor potentials of dimethyl tetraoxide.
    da Silva G; Bozzelli JW
    J Phys Chem A; 2007 Nov; 111(47):12026-36. PubMed ID: 17983209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.