These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 16833789)

  • 1. Atmospheric pressure coated-wall flow-tube study of acetone adsorption on ice.
    Bartels-Rausch T; Huthwelker T; Gäggeler HW; Ammann M
    J Phys Chem A; 2005 May; 109(20):4531-9. PubMed ID: 16833789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetone adsorption on ice surfaces in the temperature range T = 190-220 K: evidence for aging effects due to crystallographic changes of the adsorption sites.
    Behr P; Terziyski A; Zellner R
    J Phys Chem A; 2006 Jul; 110(26):8098-107. PubMed ID: 16805496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of benzaldehyde at the surface of ice, studied by experimental method and computer simulation.
    Petitjean M; Hantal G; Chauvin C; Mirabel P; Le Calvé S; Hoang PN; Picaud S; Jedlovszky P
    Langmuir; 2010 Jun; 26(12):9596-606. PubMed ID: 20329716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption study of acetone on acid-doped ice surfaces between 203 and 233 K.
    Journet E; Le Calvé S; Mirabel P
    J Phys Chem B; 2005 Jul; 109(29):14112-7. PubMed ID: 16852772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A kinetic model for uptake of HNO3 and HCl on ice in a coated wall flow system.
    Anthony Cox R; Fernandez MA; Symington A; Ullerstam M; Abbatt JP
    Phys Chem Chem Phys; 2005 Oct; 7(19):3434-42. PubMed ID: 16273144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption and hydrolysis of alcohols and carbonyls on ice at temperatures of the upper troposphere.
    Symington A; Leow LM; Griffiths PT; Cox RA
    J Phys Chem A; 2012 Jun; 116(24):5990-6002. PubMed ID: 22289115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake of SO2 on HOBr-ice surfaces.
    Jin R; Chu LT
    J Phys Chem A; 2006 Mar; 110(10):3647-54. PubMed ID: 16526647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the adsorption behaviour of acetone at the surface of ice. A grand canonical Monte Carlo simulation study.
    Hantal G; Jedlovszky P; Hoang PN; Picaud S
    Phys Chem Chem Phys; 2008 Nov; 10(42):6369-80. PubMed ID: 18972025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum chemical studies of the adsorption of single acetone molecules on hexagonal ice I(h) and cubic ice I(c).
    Somnitz H
    Phys Chem Chem Phys; 2009 Feb; 11(7):1033-42. PubMed ID: 19543600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of ClONO(2) reactive uptake on ice surfaces at temperatures of the upper troposphere.
    Fernandez MA; Hynes RG; Cox RA
    J Phys Chem A; 2005 Nov; 109(44):9986-96. PubMed ID: 16838916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of water adsorption on kaolinite under atmospheric conditions.
    Croteau T; Bertram AK; Patey GN
    J Phys Chem A; 2009 Jul; 113(27):7826-33. PubMed ID: 19514713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of hydroxyacetone on pure ice surfaces.
    Petitjean M; Darvas M; Picaud S; Jedlovszky P; Le Calvé S
    Chemphyschem; 2010 Dec; 11(18):3921-7. PubMed ID: 21125553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of acetone with single wall carbon nanotubes at cryogenic temperatures: a combined temperature programmed desorption and theoretical study.
    Kazachkin D; Nishimura Y; Irle S; Morokuma K; Vidic RD; Borguet E
    Langmuir; 2008 Aug; 24(15):7848-56. PubMed ID: 18613702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of hydrogen chloride with ice surfaces: the effects of grain size, surface roughness, and surface disorder.
    McNeill VF; Geiger FM; Loerting T; Trout BL; Molina LT; Molina MJ
    J Phys Chem A; 2007 Jul; 111(28):6274-84. PubMed ID: 17585738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the adsorption isotherm of methanol on the surface of ice. An experimental and grand canonical Monte Carlo simulation study.
    Jedlovszky P; Pártay L; Hoang PN; Picaud S; von Hessberg P; Crowley JN
    J Am Chem Soc; 2006 Nov; 128(47):15300-9. PubMed ID: 17117883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-adsorption of acetic acid and nitrous acid on ice.
    Kerbrat M; Huthwelker T; Bartels-Rausch T; Gäggeler HW; Ammann M
    Phys Chem Chem Phys; 2010 Jul; 12(26):7194-202. PubMed ID: 20485807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of tropospheric ice surfaces in the elimination of the CFC substitute, trifluoroethanol.
    Moreno E; Aranda A; Díaz-de-Mera Y; Martínez E; Bravo I; Rodríguez A
    Phys Chem Chem Phys; 2012 Apr; 14(13):4425-32. PubMed ID: 22361877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of acetaldehyde on ice as seen from computer simulation and infrared spectroscopy measurements.
    Darvas M; Lasne J; Laffon C; Parent P; Picaud S; Jedlovszky P
    Langmuir; 2012 Mar; 28(9):4198-207. PubMed ID: 22320190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake measurements of ethanol on ice surfaces and on supercooled aqueous solutions doped with nitric acid between 213 and 243 K.
    Kerbrat M; Le Calvé S; Mirabel P
    J Phys Chem A; 2007 Feb; 111(5):925-31. PubMed ID: 17266234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The kinetics of H2O vapor condensation and evaporation on different types of ice in the range 130-210 K.
    Pratte P; van den Bergh H; Rossi MJ
    J Phys Chem A; 2006 Mar; 110(9):3042-58. PubMed ID: 16509626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.