These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 16833870)

  • 1. Marked influences on the adenine-cytosine base pairs by electron attachment and ionization.
    Tian SX
    J Phys Chem A; 2005 Jun; 109(23):5153-9. PubMed ID: 16833870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures and energetics of the deprotonated adenine-uracil base pair, including proton-transferred systems.
    Kim S; Lind MC; Schaefer HF
    J Phys Chem B; 2008 Mar; 112(11):3545-51. PubMed ID: 18303886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment.
    Jurecka P; Hobza P
    J Am Chem Soc; 2003 Dec; 125(50):15608-13. PubMed ID: 14664608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A theoretical study of structures and electron affinities of radical anions of guanine-cytosine, adenine-thymine, and hypoxanthine-cytosine base pairs.
    Kumar A; Knapp-Mohammady M; Mishra PC; Suhai S
    J Comput Chem; 2004 Jun; 25(8):1047-59. PubMed ID: 15067680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization energies of the hydrogen-bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5'-d(GCGAAGC)-3' hairpin: Complete basis set calculations at the MP2 and CCSD(T) levels.
    Dabkowska I; Gonzalez HV; Jurecka P; Hobza P
    J Phys Chem A; 2005 Feb; 109(6):1131-6. PubMed ID: 16833422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of microsolvation on the adenine-uracil base pair and its radical anion: adenine-uracil mono- and dihydrates.
    Kim S; Schaefer HF
    J Phys Chem A; 2007 Oct; 111(41):10381-9. PubMed ID: 17705454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of gold clusters with DNA base pairs: a density functional study of neutral and anionic GC-Aun and AT-Aun (n = 4, 8) complexes.
    Kumar A; Mishra PC; Suhai S
    J Phys Chem A; 2006 Jun; 110(24):7719-27. PubMed ID: 16774220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoswitches based on DNA base pairs: why adenine-thymine is less suitable than guanine-cytosine.
    Fonseca Guerra C; van der Wijst T; Bickelhaupt FM
    Chemphyschem; 2006 Sep; 7(9):1971-9. PubMed ID: 16888742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adiabatic electron affinities of the polyhydrated adenine-thymine base pair: a density functional study.
    Kumar A; Mishra PC; Suhai S
    J Phys Chem A; 2005 May; 109(17):3971-9. PubMed ID: 16833718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valence anions of 9-methylguanine-1-methylcytosine complexes. Computational and photoelectron spectroscopy studies.
    Szyperska A; Rak J; Leszczynski J; Li X; Ko YJ; Wang H; Bowen KH
    J Am Chem Soc; 2009 Feb; 131(7):2663-9. PubMed ID: 19170629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do anionic gold clusters modify conventional hydrogen bonds? The interaction of anionic Au(n) (n = 2-4) with the adenine-uracil base pair.
    Martínez A
    J Phys Chem A; 2009 Feb; 113(6):1134-40. PubMed ID: 19193174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density functional study toward understanding dehydrogenation of the adenine-thymine base pair and its anion.
    Xie H; Xia F; Cao Z
    J Phys Chem A; 2007 May; 111(20):4384-90. PubMed ID: 17474725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double-proton transfer in adenine-thymine and guanine-cytosine base pairs. A post-Hartree-Fock ab initio study.
    Gorb L; Podolyan Y; Dziekonski P; Sokalski WA; Leszczynski J
    J Am Chem Soc; 2004 Aug; 126(32):10119-29. PubMed ID: 15303888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen-atom abstraction from the adenine-uracil base pair.
    Kim S; Meehan T; Schaefer HF
    J Phys Chem A; 2007 Jul; 111(29):6806-12. PubMed ID: 17388361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Marked variations of dissociation energy and H-bond character of the guanine-cytosine base pair induced by one-electron oxidation and Li+ cation coupling.
    Sun L; Bu Y
    J Phys Chem B; 2005 Jan; 109(1):593-600. PubMed ID: 16851051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of cytosine-Al, cytosine-Cu and cytosine-Ag (neutral, anionic and cationic).
    Vazquez MV; Martínez A
    J Phys Chem A; 2008 Feb; 112(5):1033-9. PubMed ID: 18193849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct assessment of interresidue forces in Watson-Crick base pairs using theoretical compliance constants.
    Grunenberg J
    J Am Chem Soc; 2004 Dec; 126(50):16310-1. PubMed ID: 15600318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homopairing possibilities of the DNA base adenine.
    Kelly RE; Lee YJ; Kantorovich LN
    J Phys Chem B; 2005 Jun; 109(24):11933-9. PubMed ID: 16852470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The protonated guanine-cytosine base pair.
    Wang H; Zhang JD; Schaefer HF
    Chemphyschem; 2010 Feb; 11(3):622-9. PubMed ID: 20039356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic structure of adenine and thymine base pairs studied by femtosecond electron-ion coincidence spectroscopy.
    Gador N; Samoylova E; Smith VR; Stolow A; Rayner DM; Radloff W; Hertel IV; Schultz T
    J Phys Chem A; 2007 Nov; 111(46):11743-9. PubMed ID: 17973356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.