These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16834)

  • 21. Restoration of catecholamine content of previously depleted adrenal medulla in vitro: importance of synthesis in maintaining the catecholamine stores.
    Wakade AR; Wakade TD; Malhotra RK
    J Neurochem; 1988 Sep; 51(3):820-9. PubMed ID: 2900877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cytochemical evidence for the existence of norepinephrine-containing glomus cells in the rat carotid body.
    Christie DS; Hansen JT
    J Neurocytol; 1983 Dec; 12(6):1041-53. PubMed ID: 6663323
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluorimetric quantitation of catecholamine turnover in the sympathetic neurons of rat.
    Alho H
    Histochemistry; 1984; 80(4):363-6. PubMed ID: 6735748
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immunohistochemical evidence for species-specific coexistence of catecholamines, serotonin, acetylcholine and nitric oxide in glomus cells of rat and guinea pig aortic bodies.
    Dvorakova MC; Kummer W
    Ann Anat; 2005 Sep; 187(4):323-31. PubMed ID: 16163845
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alternative catecholamine pathways after tyrosine hydroxylase inhibition in malignant pheochromocytoma.
    Kuchel O; Buu NT; Edwards DJ
    J Lab Clin Med; 1990 Apr; 115(4):449-53. PubMed ID: 1969915
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of centrifugal sinus nerve activity on carotid body catecholamines: microphotometric analysis of formaldehyde-induced fluorescence.
    Sampson SR; Nicolaysen G; Jaffe RA
    Brain Res; 1975 Mar; 85(3):437-46. PubMed ID: 1111847
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sexual maturation modifies the catecholaminergic control of gonadotrophin secretion and the effect of ovarian hormones on hypothalamic neurotransmitters in female rats.
    Moguilevsky JA; Arias P; Szwarcfarb B; Carbone S; Rondina D
    Neuroendocrinology; 1990 Oct; 52(4):393-8. PubMed ID: 1702190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of catecholamine synthesis with alpha-methyl-p-tyrosine apparently increases brain serotoninergic activity in the rat: no influence of previous chronic immobilization stress.
    Pol O; Campmany L; Armario A
    Pharmacol Biochem Behav; 1995 Sep; 52(1):107-12. PubMed ID: 7501651
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lack of behavioral effects of monoamine depletion in healthy subjects.
    Salomon RM; Miller HL; Krystal JH; Heninger GR; Charney DS
    Biol Psychiatry; 1997 Jan; 41(1):58-64. PubMed ID: 8988796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ipsapirone, a new anxiolytic drug, stimulates catecholamine turnover in various regions of the rat brain.
    GoĊ‚embiowska K
    Pol J Pharmacol Pharm; 1990; 42(2):143-50. PubMed ID: 1980361
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of inhibition of catecholamine synthesis on central catecholamine-containing neurones in the developing albino rat.
    Loizou LA
    Br J Pharmacol; 1971 Jan; 41(1):41-8. PubMed ID: 5547761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of hypothalamic catecholamine synthesis inhibition by alpha-methyltyrosine on gonadotropin secretion during sexual maturation in the male Wistar rat.
    Raum WJ; Swerdloff RS
    Endocrinology; 1986 Jul; 119(1):168-75. PubMed ID: 2873025
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of LHRH on rat conditioned avoidance behavior: interaction with brain catecholamines.
    Nasello AG; Bydlowski CR; Felicio LF
    Pharmacol Biochem Behav; 1990 Dec; 37(4):639-42. PubMed ID: 1982693
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Alpha-methyl-paratyrosine in the treatment of malignant pheochromocytoma].
    Decoulx M; Wemeau JL; Racadot-Leroy N; Grimbert I; Proye C; Plane C
    Rev Med Interne; 1987; 8(4):383-8. PubMed ID: 3423477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [The brain catecholamine systems in the regulation of dominance].
    Serova LI; Naumenko EV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1990; 40(3):490-6. PubMed ID: 1975967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of acute and chronic administration of morphine on the turnover of brain and adrenal catecholamines in rats.
    Guaza C; Torrellas A; Borrell S; Borrell J
    Psychopharmacology (Berl); 1980; 68(1):43-9. PubMed ID: 6104838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catecholamine biosynthesis in specific brain areas of the rat as determined by liquid chromatography and amperometric detection.
    Bennett BA; Sundberg DK
    Life Sci; 1981 Jun; 28(25):2811-7. PubMed ID: 6115297
    [No Abstract]   [Full Text] [Related]  

  • 38. The effects of 6-hydroxydopamine on the appearance of granulated vesicles in glomus cells of the rat carotid body.
    Hess A
    Tissue Cell; 1976; 8(2):381-7. PubMed ID: 821176
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Catecholamines in carotid glomus. Autoradiographic studies on catecholamine- and amino acid-metabolism using H-3-phenylalanine].
    Helpap B; Hempel K
    Arzneimittelforschung; 1972 Sep; 22(9):1558. PubMed ID: 4678626
    [No Abstract]   [Full Text] [Related]  

  • 40. Effects of methionine-enkephalin on prolactin release and catecholamine levels and turnover in the median eminence.
    Ferland L; Fuxe K; Eneroth P; Gustafsson JA; Skett P
    Eur J Pharmacol; 1977 May; 43(1):89-90. PubMed ID: 16758
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.