BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 16834015)

  • 1. Prediction and rationalization of protein pKa values using QM and QM/MM methods.
    Jensen JH; Li H; Robertson AD; Molina PA
    J Phys Chem A; 2005 Aug; 109(30):6634-43. PubMed ID: 16834015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pKa calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols.
    Riccardi D; Schaefer P; Cui Q
    J Phys Chem B; 2005 Sep; 109(37):17715-33. PubMed ID: 16853267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab initio quantum mechanics-based free energy perturbation method for calculating relative solvation free energies.
    Reddy MR; Singh UC; Erion MD
    J Comput Chem; 2007 Jan; 28(2):491-4. PubMed ID: 17186484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redistributed charge and dipole schemes for combined quantum mechanical and molecular mechanical calculations.
    Lin H; Truhlar DG
    J Phys Chem A; 2005 May; 109(17):3991-4004. PubMed ID: 16833721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards accurate ab initio QM/MM calculations of free-energy profiles of enzymatic reactions.
    Rosta E; Klähn M; Warshel A
    J Phys Chem B; 2006 Feb; 110(6):2934-41. PubMed ID: 16471904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A polarizable continuum approach for the study of heterogeneous dielectric environments.
    Iozzi MF; Cossi M; Improta R; Rega N; Barone V
    J Chem Phys; 2006 May; 124(18):184103. PubMed ID: 16709093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Very fast empirical prediction and rationalization of protein pKa values.
    Li H; Robertson AD; Jensen JH
    Proteins; 2005 Dec; 61(4):704-21. PubMed ID: 16231289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopically determined force field for water dimer: physically enhanced treatment of hydrogen bonding in molecular mechanics energy functions.
    Mannfors B; Palmo K; Krimm S
    J Phys Chem A; 2008 Dec; 112(49):12667-78. PubMed ID: 19012387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. YinYang atom: a simple combined ab initio quantum mechanical molecular mechanical model.
    Shao Y; Kong J
    J Phys Chem A; 2007 May; 111(18):3661-71. PubMed ID: 17429951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein NMR chemical shift calculations based on the automated fragmentation QM/MM approach.
    He X; Wang B; Merz KM
    J Phys Chem B; 2009 Jul; 113(30):10380-8. PubMed ID: 19575540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications.
    Nagata T; Fedorov DG; Kitaura K; Gordon MS
    J Chem Phys; 2009 Jul; 131(2):024101. PubMed ID: 19603964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.
    Sumner I; Iyengar SS
    J Phys Chem A; 2007 Oct; 111(41):10313-24. PubMed ID: 17894476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating boundary dependent errors in QM/MM simulations.
    Solt I; Kulhánek P; Simon I; Winfield S; Payne MC; Csányi G; Fuxreiter M
    J Phys Chem B; 2009 Apr; 113(17):5728-35. PubMed ID: 19341253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational methods for the study of enzymic reaction mechanisms III: a perturbation plus QM/MM approach for calculating relative free energies of protonation.
    Cummins PL; Gready JE
    J Comput Chem; 2005 Apr; 26(6):561-8. PubMed ID: 15726569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classical polarization in hybrid QM/MM methods.
    Illingworth CJ; Gooding SR; Winn PJ; Jones GA; Ferenczy GG; Reynolds CA
    J Phys Chem A; 2006 May; 110(20):6487-97. PubMed ID: 16706406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining quantum wavepacket ab initio molecular dynamics with QM/MM and QM/QM techniques: Implementation blending ONIOM and empirical valence bond theory.
    Sumner I; Iyengar SS
    J Chem Phys; 2008 Aug; 129(5):054109. PubMed ID: 18698890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QM/MM-PBSA method to estimate free energies for reactions in proteins.
    Kaukonen M; Söderhjelm P; Heimdal J; Ryde U
    J Phys Chem B; 2008 Oct; 112(39):12537-48. PubMed ID: 18781715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frozen density functional free energy simulations of redox proteins: computational studies of the reduction potential of plastocyanin and rusticyanin.
    Olsson MH; Hong G; Warshel A
    J Am Chem Soc; 2003 Apr; 125(17):5025-39. PubMed ID: 12708852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.