These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 16834079)

  • 1. Influence of monolayer amounts of HNO3 on the evaporation rate of H2O over ice in the range 179 to 208 K: a quartz crystal microbalance study.
    Delval C; Rossi MJ
    J Phys Chem A; 2005 Aug; 109(32):7151-65. PubMed ID: 16834079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The kinetics of H2O vapor condensation and evaporation on different types of ice in the range 130-210 K.
    Pratte P; van den Bergh H; Rossi MJ
    J Phys Chem A; 2006 Mar; 110(9):3042-58. PubMed ID: 16509626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic study of heterogeneous reaction of deliquesced NaCl particles with gaseous HNO3 using particle-on-substrate stagnation flow reactor approach.
    Liu Y; Cain JP; Wang H; Laskin A
    J Phys Chem A; 2007 Oct; 111(40):10026-43. PubMed ID: 17850118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake measurements of acetaldehyde on solid ice surfaces and on solid/liquid supercooled mixtures doped with HNO3 in the temperature range 203-253 K.
    Petitjean M; Mirabel P; Le Calvé S
    J Phys Chem A; 2009 Apr; 113(17):5091-8. PubMed ID: 19344180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake measurements of ethanol on ice surfaces and on supercooled aqueous solutions doped with nitric acid between 213 and 243 K.
    Kerbrat M; Le Calvé S; Mirabel P
    J Phys Chem A; 2007 Feb; 111(5):925-31. PubMed ID: 17266234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption study of acetone on acid-doped ice surfaces between 203 and 233 K.
    Journet E; Le Calvé S; Mirabel P
    J Phys Chem B; 2005 Jul; 109(29):14112-7. PubMed ID: 16852772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion of HDO in pure and acid-doped ice films.
    Oxley SP; Zahn CM; Pursell CJ
    J Phys Chem A; 2006 Sep; 110(38):11064-73. PubMed ID: 16986839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persistent Water-Nitric Acid Condensate with Saturation Water Vapor Pressure Greater than That of Hexagonal Ice.
    Gao RS; Gierczak T; Thornberry TD; Rollins AW; Burkholder JB; Telg H; Voigt C; Peter T; Fahey DW
    J Phys Chem A; 2016 Mar; 120(9):1431-40. PubMed ID: 26447682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Release of oxygen atoms and nitric oxide molecules from the ultraviolet photodissociation of nitrate adsorbed on water ice films at 100 K.
    Yabushita A; Kawanaka N; Kawasaki M; Hamer PD; Shallcross DE
    J Phys Chem A; 2007 Sep; 111(35):8629-34. PubMed ID: 17696502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of porosity in vapor-deposited amorphous solid water from methane adsorption.
    Raut U; Famá M; Teolis BD; Baragiola RA
    J Chem Phys; 2007 Nov; 127(20):204713. PubMed ID: 18052452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Burial of gas-phase HNO(3) by growing ice surfaces under tropospheric conditions.
    Ullerstam M; Abbatt JP
    Phys Chem Chem Phys; 2005 Oct; 7(20):3596-600. PubMed ID: 16294236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal evolution of acetic acid nanodeposits over 123-180 K on noncrystalline ice and polycrystalline ice studied by FTIR reflection-absorption spectroscopy: hydrogen-bonding interactions in acetic acid and between acetic acid and ice.
    Gao Q; Leung KT
    J Phys Chem B; 2005 Jul; 109(27):13263-71. PubMed ID: 16852654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiation effects in water ice: a near-edge x-ray absorption fine structure study.
    Laffon C; Lacombe S; Bournel F; Parent P
    J Chem Phys; 2006 Nov; 125(20):204714. PubMed ID: 17144730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature, composition, and hydrogen isotope effect in the hydrogenation of CO on amorphous ice surface at 10-20 K.
    Hidaka H; Kouchi A; Watanabe N
    J Chem Phys; 2007 May; 126(20):204707. PubMed ID: 17552789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trapping and release of CO2 guest molecules by amorphous ice.
    Malyk S; Kumi G; Reisler H; Wittig C
    J Phys Chem A; 2007 Dec; 111(51):13365-70. PubMed ID: 18047299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake of formic acid on thin ice films and on ice doped with nitric acid between 195 and 211 K.
    Romanias MN; Zogka AG; Stefanopoulos VG; Papadimitriou VC; Papagiannakopoulos P
    Chemphyschem; 2010 Dec; 11(18):4042-52. PubMed ID: 20960493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A calorimetric study on the low temperature dynamics of doped ice V and its reversible phase transition to hydrogen ordered ice XIII.
    Salzmann CG; Radaelli PG; Finney JL; Mayer E
    Phys Chem Chem Phys; 2008 Nov; 10(41):6313-24. PubMed ID: 18936855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer simulation study of metastable ice VII and amorphous phases obtained by its melting.
    Slovák J; Tanaka H
    J Chem Phys; 2005 May; 122(20):204512. PubMed ID: 15945757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. D(2) desorption kinetics on amorphous solid water: from compact to porous ice films.
    Fillion JH; Amiaud L; Congiu E; Dulieu F; Momeni A; Lemaire JL
    Phys Chem Chem Phys; 2009 Jun; 11(21):4396-402. PubMed ID: 19458844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ices of CO2/H2O mixtures. Reflection-absorption IR spectroscopy and theoretical calculations.
    Maté B; Galvez O; Martín-Llorente B; Moreno MA; Herrero VJ; Escribano R; Artacho E
    J Phys Chem A; 2008 Jan; 112(3):457-65. PubMed ID: 18171034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.