These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 16834155)

  • 1. Cyclodehydrogenation reactions to cyclopentafused polycyclic aromatic hydrocarbons.
    Violi A
    J Phys Chem A; 2005 Sep; 109(34):7781-7. PubMed ID: 16834155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation mechanism of polycyclic aromatic hydrocarbons beyond the second aromatic ring.
    Kislov VV; Sadovnikov AI; Mebel AM
    J Phys Chem A; 2013 Jun; 117(23):4794-816. PubMed ID: 23672431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation of an Embedded Five-Membered Ring in Polycyclic Aromatic Hydrocarbons via the Hydrogen-Abstraction-Acetylene-Addition Mechanism: A Theoretical Study.
    Semenikhin AS; Savchenkova AS; Chechet IV; Matveev SG; Frenklach M; Mebel AM
    J Phys Chem A; 2021 Apr; 125(16):3341-3354. PubMed ID: 33876944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretative optimization and artificial neural network modeling of the gas chromatographic separation of polycyclic aromatic hydrocarbons.
    Sremac S; Popović A; Todorović Z; Cokesa D; Onjia A
    Talanta; 2008 Jun; 76(1):66-71. PubMed ID: 18585242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation mechanism of polycyclic aromatic hydrocarbons in benzene combustion: Quantum chemical molecular dynamics simulations.
    Saha B; Irle S; Morokuma K
    J Chem Phys; 2010 Jun; 132(22):224303. PubMed ID: 20550393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio G3-type/statistical theory study of the formation of indene in combustion flames. I. Pathways involving benzene and phenyl radical.
    Kislov VV; Mebel AM
    J Phys Chem A; 2007 May; 111(19):3922-31. PubMed ID: 17260977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron affinities of polycyclic aromatic hydrocarbons by means of B3LYP/6-31+G* calculations.
    Modelli A; Mussoni L; Fabbri D
    J Phys Chem A; 2006 May; 110(20):6482-6. PubMed ID: 16706405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible molecular hydrogen formation mediated by the radical cations of anthracene and pyrene.
    Hirama M; Ishida T; Aihara J
    J Comput Chem; 2003 Sep; 24(12):1378-82. PubMed ID: 12868102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate and efficient method for predicting thermochemistry of polycyclic aromatic hydrocarbons - bond-centered group additivity.
    Yu J; Sumathi R; Green WH
    J Am Chem Soc; 2004 Oct; 126(39):12685-700. PubMed ID: 15453803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of polycyclic aromatic hydrocarbons by Sphingomonas sp. VKM B-2434.
    Baboshin M; Akimov V; Baskunov B; Born TL; Khan SU; Golovleva L
    Biodegradation; 2008 Jul; 19(4):567-76. PubMed ID: 17957485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can the C(5)H(5) + C(5)H(5) --> C(10)H(10) --> C(10)H(9) + H/C(10)H(8) + H(2) reaction produce naphthalene? An Ab initio/RRKM study.
    Mebel AM; Kislov VV
    J Phys Chem A; 2009 Sep; 113(36):9825-33. PubMed ID: 19681629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microsomal biotransformation of benzo[ghi]perylene, a mutagenic polycyclic aromatic hydrocarbon without a "classic" bay region.
    Platt KL; Grupe S
    Chem Res Toxicol; 2005 Apr; 18(4):700-10. PubMed ID: 15833030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational studies on the cyclization of polycyclic aromatic hydrocarbons in the synthesis of curved aromatic derivatives.
    Buñuel E; Marco-Martínez J; Díaz-Tendero S; Martín F; Alcamí M; Cárdenas DJ
    Chemphyschem; 2006 Feb; 7(2):475-81. PubMed ID: 16463336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of formation of 8-oxoguanine due to reactions of one and two OH* radicals and the H2O2 molecule with guanine: A quantum computational study.
    Jena NR; Mishra PC
    J Phys Chem B; 2005 Jul; 109(29):14205-18. PubMed ID: 16852784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The formation of naphthalene, azulene, and fulvalene from cyclic C5 species in combustion: an ab initio/RRKM study of 9-H-fulvalenyl (C5H5-C5H4) radical rearrangements.
    Kislov VV; Mebel AM
    J Phys Chem A; 2007 Sep; 111(38):9532-43. PubMed ID: 17711267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospray mass spectrometric and DFT study of substituent effects in Ag(+) complexation to polycyclic aromatic hydrocarbons (PAHs).
    Laali KK; Hupertz S; Temu AG; Galembeck SE
    Org Biomol Chem; 2005 Jun; 3(12):2319-26. PubMed ID: 16010367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photodissociation dynamics of small aromatic molecules studied by multimass ion imaging.
    Ni CK; Tseng CM; Lin MF; Dyakov YA
    J Phys Chem B; 2007 Nov; 111(44):12631-42. PubMed ID: 17935318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of phenyl radicals in the growth of polycyclic aromatic hydrocarbons.
    Shukla B; Susa A; Miyoshi A; Koshi M
    J Phys Chem A; 2008 Mar; 112(11):2362-9. PubMed ID: 18298104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic spectroscopy of nonalternant hydrocarbons inside helium nanodroplets.
    Birer O; Moreschini P; Lehmann KK; Scoles G
    J Phys Chem A; 2007 Dec; 111(49):12200-9. PubMed ID: 17880187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenyl migrations in dehydroaromatic compounds. A new mechanistic link between alternant and nonalternant hydrocarbons at high temperatures.
    Preda DV; Scott LT
    Org Lett; 2000 May; 2(10):1489-92. PubMed ID: 10814480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.