BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16834188)

  • 1. Theoretical investigation on the rotational isomerism of calix[4]arenes: influence of the hydroxyl --> methoxy replacement.
    Aleman C; Casanovas J
    J Phys Chem A; 2005 Sep; 109(35):8049-54. PubMed ID: 16834188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational isomerism of electroactive calix[4]arenes: influence of the electronic state in the flexibility of thiophene-containing calix[4]arene.
    Alemán C; Zanuy D; Casanovas J
    J Org Chem; 2006 Sep; 71(18):6952-7. PubMed ID: 16930049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of multiple cation-pi interactions upon calix[4]arene substrate binding and specificity.
    Macias AT; Norton JE; Evanseck JD
    J Am Chem Soc; 2003 Feb; 125(8):2351-60. PubMed ID: 12590565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of bismuth and antimony complexes of the "larger" calix[n]arenes (n=6-8); from mononuclear to tetranuclear complexes.
    Mendoza-Espinosa D; Rheingold AL; Hanna TA
    Dalton Trans; 2009 Jul; (26):5226-38. PubMed ID: 19562184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of solvation on pinched cone-pinched cone interconversion of tetraethoxycalix[4]arene and tetraethoxythiacalix[4]arene.
    Matousek J; Kulhánek P; Cajan M; Koca J
    J Phys Chem A; 2006 Jan; 110(3):861-7. PubMed ID: 16419982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy and geometry of cooperative hydrogen bonds in p-substituted calix[n]- and thiacalix[n]arenes: a quantum-chemical approach.
    Novikov AN; Shapiro YE
    J Phys Chem A; 2012 Jan; 116(1):546-59. PubMed ID: 22129034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of para-substituents on alkaline earth metal ion extraction by proton di-ionizable calix[4]arene-crown-6 ligands in cone, partial-cone and 1,3-alternate conformations.
    Zhou H; Liu D; Gega J; Surowiec K; Purkiss DW; Bartsch RA
    Org Biomol Chem; 2007 Jan; 5(2):324-32. PubMed ID: 17205177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of hydrogen-bond array isomerization in tetrahydroxycalix[4]arene and tetrahydroxythiacalix[4]arene.
    Matousek J; Cajan M; Kulhánek P; Koca J
    J Phys Chem A; 2008 Feb; 112(5):1076-84. PubMed ID: 18181594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear optical properties in calix[n]arenes: orientation effects of monomers.
    Datta A; Pati SK
    Chemistry; 2005 Aug; 11(17):4961-9. PubMed ID: 15973743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Permittivity-dependent entropy driven complexation ability of cone and paco tetranitro-calix[4]arene toward para-substituted phenols.
    Kunsági-Máté S; Csók Z; Tuzi A; Kollár L
    J Phys Chem B; 2008 Sep; 112(37):11743-9. PubMed ID: 18712909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure and binding energies of the van der Waals complexes of Ar and N2 with phenol and its cation, studied by high level ab initio and density functional theory calculations.
    Vincent MA; Hillier IH; Morgado CA; Burton NA; Shan X
    J Chem Phys; 2008 Jan; 128(4):044313. PubMed ID: 18247955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio and analytic intermolecular potentials for Ar-CH(3)OH.
    Tasić U; Alexeev Y; Vayner G; Crawford TD; Windus TL; Hase WL
    Phys Chem Chem Phys; 2006 Oct; 8(40):4678-84. PubMed ID: 17047766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and resolution of a multifunctional inherently chiral calix[4]arene with an ABCD substitution pattern at the wide rim: the effect of a multifunctional structure in the organocatalyst on enantioselectivity in asymmetric reactions.
    Shirakawa S; Kimura T; Murata S; Shimizu S
    J Org Chem; 2009 Feb; 74(3):1288-96. PubMed ID: 19099418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and structures of an unusual germanium(II) calix[4]arene complex and the first germanium(II) calix[8]arene complex and their reactivity with diiron nonacarbonyl.
    Wetherby AE; Goeller LR; DiPasquale AG; Rheingold AL; Weinert CS
    Inorg Chem; 2007 Sep; 46(18):7579-86. PubMed ID: 17691771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bis-calix[4]arenes bridged by an electroactive tetrathiafulvalene unit.
    Zhao BT; Blesa MJ; Mercier N; Le Derf F; Sallé M
    J Org Chem; 2005 Aug; 70(16):6254-7. PubMed ID: 16050684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The strength of parallel-displaced arene-arene interactions in chloroform.
    Gung BW; Xue X; Reich HJ
    J Org Chem; 2005 Apr; 70(9):3641-4. PubMed ID: 15845001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and self-assembly of thio derivatives of calix[4]arene on noble metal surfaces.
    Genorio B; He T; Meden A; Polanc S; Jamnik J; Tour JM
    Langmuir; 2008 Oct; 24(20):11523-32. PubMed ID: 18816014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of mono-, di- and tetra-alkyne functionalized calix[4]arenes: reactions of these multipodal ligands with dicobalt octacarbonyl to give complexes which contain up to eight cobalt atoms.
    Chetcuti MJ; Devoille AM; Othman AB; Souane R; Thuéry P; Vicens J
    Dalton Trans; 2009 Apr; (16):2999-3008. PubMed ID: 19352528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Titanium and zirconium complexes of a phosphorus-containing p-tert-butylcalix[5]arene ligand: importance of metal and conformation on ligand/metal binding.
    Fan M; Zhang H; Lattman M
    Inorg Chem; 2006 Aug; 45(16):6490-6. PubMed ID: 16878963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionalization of the methylene bridges of the calix[6]arene scaffold.
    Kogan K; Columbus I; Biali SE
    J Org Chem; 2008 Sep; 73(18):7327-35. PubMed ID: 18707171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.