BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

808 related articles for article (PubMed ID: 16834201)

  • 1. Kinetics of the unimolecular decomposition of the 2-chloroallyl radical.
    Shestov AA; Popov KV; Knyazev VD
    J Phys Chem A; 2005 Sep; 109(36):8149-57. PubMed ID: 16834201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shock tube and theoretical studies on the thermal decomposition of propane: evidence for a roaming radical channel.
    Sivaramakrishnan R; Su MC; Michael JV; Klippenstein SJ; Harding LB; Ruscic B
    J Phys Chem A; 2011 Apr; 115(15):3366-79. PubMed ID: 21446707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics, mechanism, and thermochemistry of the gas phase reaction of atomic chlorine with dimethyl sulfoxide.
    Nicovich JM; Parthasarathy S; Pope FD; Pegus AT; McKee ML; Wine PH
    J Phys Chem A; 2006 Jun; 110(21):6874-85. PubMed ID: 16722703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rate coefficients for the gas-phase reaction of the hydroxyl radical with CH2=CHF and CH2=CF2.
    Baasandorj M; Knight G; Papadimitriou VC; Talukdar RK; Ravishankara AR; Burkholder JB
    J Phys Chem A; 2010 Apr; 114(13):4619-33. PubMed ID: 20225809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of the gas-phase recombination reaction of hydroxyl radicals to form hydrogen peroxide.
    Sellevåg SR; Georgievskii Y; Miller JA
    J Phys Chem A; 2009 Apr; 113(16):4457-67. PubMed ID: 19371118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of the reactions of CH2Cl, CH3CHCl, and CH3CCl2 radicals with Cl2 in the temperature range 191-363 K.
    Rissanen MP; Eskola AJ; Timonen RS
    J Phys Chem A; 2010 Apr; 114(14):4805-10. PubMed ID: 20136084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics, mechanism, and thermochemistry of the gas-phase reaction of atomic chlorine with pyridine.
    Zhao Z; Huskey DT; Olsen KJ; Nicovich JM; McKee ML; Wine PH
    Phys Chem Chem Phys; 2007 Aug; 9(31):4383-94. PubMed ID: 17687485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rate constants for OH with selected large alkanes: shock-tube measurements and an improved group scheme.
    Sivaramakrishnan R; Michael JV
    J Phys Chem A; 2009 Apr; 113(17):5047-60. PubMed ID: 19348456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A kinetic study of the reactions of Ca+ ions with O3, O2, N2, CO2 and H2O.
    Broadley SL; Vondrak T; Plane JM
    Phys Chem Chem Phys; 2007 Aug; 9(31):4357-69. PubMed ID: 17687483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ab initio Rice-Ramsperger-Kassel-Marcus/master equation investigation of SiH(4) decomposition kinetics using a kinetic Monte Carlo approach.
    Barbato A; Seghi C; Cavallotti C
    J Chem Phys; 2009 Feb; 130(7):074108. PubMed ID: 19239285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theory of multichannel thermal unimolecular reactions. 2. Application to the thermal dissociation of formaldehyde.
    Troe J
    J Phys Chem A; 2005 Sep; 109(37):8320-8. PubMed ID: 16834222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulsed laser photolysis and quantum chemical-statistical rate study of the reaction of the ethynyl radical with water vapor.
    Carl SA; Nguyen HM; Elsamra RM; Nguyen MT; Peeters J
    J Chem Phys; 2005 Mar; 122(11):114307. PubMed ID: 15836215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Falloff curves for the Reaction CH3 + O2 (+ M) --> CH3O2 (+ M) in the pressure range 2-1000 bar and the temperature range 300-700 K.
    Fernandes RX; Luther K; Troe J
    J Phys Chem A; 2006 Apr; 110(13):4442-9. PubMed ID: 16571048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio chemical kinetics for singlet CH(2) reaction with N(2) and the related decomposition of diazomethane.
    Xu S; Lin MC
    J Phys Chem A; 2010 Apr; 114(15):5195-204. PubMed ID: 20345144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rate constants for the thermal decomposition of ethanol and its bimolecular reactions with OH and D: reflected shock tube and theoretical studies.
    Sivaramakrishnan R; Su MC; Michael JV; Klippenstein SJ; Harding LB; Ruscic B
    J Phys Chem A; 2010 Sep; 114(35):9425-39. PubMed ID: 20715882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-temperature shock tube measurements of methyl radical decomposition.
    Vasudevan V; Hanson RK; Golden DM; Bowman CT; Davidson DF
    J Phys Chem A; 2007 May; 111(19):4062-72. PubMed ID: 17388279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A kinetic and product study of the Cl + HO2 reaction.
    Hickson KM; Keyser LF
    J Phys Chem A; 2005 Aug; 109(31):6887-900. PubMed ID: 16834046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational study on the kinetics and mechanism for the unimolecular decomposition of o-nitrotoluene.
    Chen SC; Xu SC; Diau E; Lin MC
    J Phys Chem A; 2006 Aug; 110(33):10130-4. PubMed ID: 16913688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The temperature and pressure dependence of the reactions H + O2 (+M) --> HO2 (+M) and H + OH (+M) --> H2O (+M).
    Sellevåg SR; Georgievskii Y; Miller JA
    J Phys Chem A; 2008 Jun; 112(23):5085-95. PubMed ID: 18491883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low temperature rate coefficients for reactions of the butadiynyl radical, C4H, with various hydrocarbons. Part II: reactions with alkenes (ethylene, propene, 1-butene), dienes (allene, 1,3-butadiene) and alkynes (acetylene, propyne and 1-butyne).
    Berteloite C; Le Picard SD; Balucani N; Canosa A; Sims IR
    Phys Chem Chem Phys; 2010 Apr; 12(15):3677-89. PubMed ID: 20358064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.