These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 1683430)

  • 41. Effect of a sudden and a slow concentration increase in plasma urea on its concentration in some tissues of the dog and rat.
    Heller J; Kleinová M; Janácek K; Rybová R
    Physiol Bohemoslov; 1984; 33(4):296-302. PubMed ID: 6484022
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of an experimental model of progressive renal disease in rats.
    Baracho NC; Kangussu LM; Prestes TR; Silveira KD; Pereira RM; Rocha NP; Silva AC
    Acta Cir Bras; 2016 Nov; 31(11):744-752. PubMed ID: 27982262
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nuclear magnetic resonance studies of blood plasma and urine from subjects with chronic renal failure: identification of trimethylamine-N-oxide.
    Bell JD; Lee JA; Lee HA; Sadler PJ; Wilkie DR; Woodham RH
    Biochim Biophys Acta; 1991 Feb; 1096(2):101-7. PubMed ID: 2001424
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The accumulation of methylamine counteracting solutes in elasmobranchs with differing levels of urea: a comparison of marine and freshwater species.
    Treberg JR; Speers-Roesch B; Piermarini PM; Ip YK; Ballantyne JS; Driedzic WR
    J Exp Biol; 2006 Mar; 209(Pt 5):860-70. PubMed ID: 16481575
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Are ninhydrin-positive substances volume-regulatory osmolytes in rat renal papillary cells?
    Law RO; Turner DP
    J Physiol; 1987 May; 386():45-61. PubMed ID: 3681715
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Guanidinosuccinic acid in renal failure, experimental azotemia and inborn errors of the urea cycle.
    Stein IM; Cohen BD; Kornhauser RS
    N Engl J Med; 1969 Apr; 280(17):926-30. PubMed ID: 5775630
    [No Abstract]   [Full Text] [Related]  

  • 47. A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation.
    Wang A; Bolen DW
    Biochemistry; 1997 Jul; 36(30):9101-8. PubMed ID: 9230042
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of chronic renal failure with metabolic acidosis on alanine metabolism in isolated liver cells.
    Cano N; Sturm JM; Meijer AJ; El-Mir MY; Novaretti R; Reynier JP; Leverve XM
    Clin Nutr; 2004 Jun; 23(3):317-24. PubMed ID: 15158294
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efflux and accumulation of amino nitrogen in relation to the volume of rat renal inner medullary cells exposed to media of variable osmolality.
    Law RO
    Biochim Biophys Acta; 1992 Feb; 1133(3):268-74. PubMed ID: 1737060
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anabolic role of urea in renal failure.
    Varcoe AR; Halliday D; Carson ER; Richards P; Tavill S
    Am J Clin Nutr; 1978 Sep; 31(9):1601-7. PubMed ID: 685876
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The presence and toxicity of guanidinoproprionic acid in uremia.
    Shainkin R; Giatt Y; Berlyne GM
    Kidney Int Suppl; 1975 Feb; (3):302-5. PubMed ID: 1057703
    [No Abstract]   [Full Text] [Related]  

  • 52. A new approach to the treatment of renal failure.
    Rosin RD
    Ann R Coll Surg Engl; 1978 Mar; 60(2):99-107. PubMed ID: 637497
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanism of diet-induced uraemia and acidosis in infants.
    Zoppi G; Zamboni G
    Eur J Pediatr; 1977 Jul; 125(3):197-204. PubMed ID: 885147
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Uremic levels of urea inhibit L-arginine transport in cultured endothelial cells.
    Xiao S; Wagner L; Mahaney J; Baylis C
    Am J Physiol Renal Physiol; 2001 Jun; 280(6):F989-95. PubMed ID: 11352838
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Accumulation of major organic osmolytes in rat renal inner medulla in dehydration.
    Gullans SR; Blumenfeld JD; Balschi JA; Kaleta M; Brenner RM; Heilig CW; Hebert SC
    Am J Physiol; 1988 Oct; 255(4 Pt 2):F626-34. PubMed ID: 3177652
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Leucine and protein metabolism in rats with chronic renal insufficiency.
    Holecek M; Sprongl L; Tilser I; Tichý M
    Exp Toxicol Pathol; 2001 Apr; 53(1):71-6. PubMed ID: 11370737
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synergy in protein-osmolyte mixtures.
    Rösgen J
    J Phys Chem B; 2015 Jan; 119(1):150-7. PubMed ID: 25490052
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrolyte-fluid distribution in acute uraemia with and without overhydration in the rabbit.
    Thysell H
    Scand J Urol Nephrol; 1972; ():Suppl 12:1-93. PubMed ID: 4634624
    [No Abstract]   [Full Text] [Related]  

  • 59. Living with urea stress.
    Singh LR; Dar TA; Ahmad F
    J Biosci; 2009 Jun; 34(2):321-31. PubMed ID: 19550048
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Intraerythrocytic cyanide metabolism in chronic renal insufficiency].
    Korz R
    Klin Wochenschr; 1973 Jan; 51(2):78-81. PubMed ID: 4686427
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.