These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 16834342)

  • 1. Mössbauer and EPR study of recombinant acetyl-CoA synthase from Moorella thermoacetica.
    Bramlett MR; Stubna A; Tan X; Surovtsev IV; Münck E; Lindahl PA
    Biochemistry; 2006 Jul; 45(28):8674-85. PubMed ID: 16834342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction and methyl transfer kinetics of the alpha subunit from acetyl coenzyme a synthase.
    Tan X; Sewell C; Yang Q; Lindahl PA
    J Am Chem Soc; 2003 Jan; 125(2):318-9. PubMed ID: 12517128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the [4Fe-4S] cluster in reductive activation of the cobalt center of the corrinoid iron-sulfur protein from Clostridium thermoaceticum during acetate biosynthesis.
    Menon S; Ragsdale SW
    Biochemistry; 1998 Apr; 37(16):5689-98. PubMed ID: 9548955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unusual NMR, EPR, and Mössbauer properties of Chromatium vinosum 2[4Fe-4S] ferredoxin.
    Kyritsis P; Kümmerle R; Huber JG; Gaillard J; Guigliarelli B; Popescu C; Münck E; Moulis JM
    Biochemistry; 1999 May; 38(19):6335-45. PubMed ID: 10320364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of acetyl-CoA synthase/carbon monoxide dehydrogenase by copper.
    Bramlett MR; Tan X; Lindahl PA
    J Am Chem Soc; 2003 Aug; 125(31):9316-7. PubMed ID: 12889960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EPR and infrared spectroscopic evidence that a kinetically competent paramagnetic intermediate is formed when acetyl-coenzyme A synthase reacts with CO.
    George SJ; Seravalli J; Ragsdale SW
    J Am Chem Soc; 2005 Oct; 127(39):13500-1. PubMed ID: 16190705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic and computational studies of a Ni(+)-CO model complex: implications for the acetyl-CoA synthase catalytic mechanism.
    Craft JL; Mandimutsira BS; Fujita K; Riordan CG; Brunold TC
    Inorg Chem; 2003 Feb; 42(3):859-67. PubMed ID: 12562200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Further characterization of the spin coupling observed in oxidized hydrogenase from Chromatium vinosum. A Mössbauer and multifrequency EPR study.
    Surerus KK; Chen M; van der Zwaan JW; Rusnak FM; Kolk M; Duin EC; Albracht SP; Münck E
    Biochemistry; 1994 Apr; 33(16):4980-93. PubMed ID: 8161560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic states of the CO oxidation/CO2 reduction active site of carbon monoxide dehydrogenase and mechanistic implications.
    Anderson ME; Lindahl PA
    Biochemistry; 1996 Jun; 35(25):8371-80. PubMed ID: 8679595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that ferredoxin interfaces with an internal redox shuttle in Acetyl-CoA synthase during reductive activation and catalysis.
    Bender G; Ragsdale SW
    Biochemistry; 2011 Jan; 50(2):276-86. PubMed ID: 21141812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nickel-dependent oligomerization of the alpha subunit of acetyl-coenzyme a synthase/carbon monoxide dehydrogenase.
    Tan X; Kagiampakis I; Surovtsev IV; Demeler B; Lindahl PA
    Biochemistry; 2007 Oct; 46(41):11606-13. PubMed ID: 17887777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the Chemical Reactivity in Acetyl-CoA Synthase.
    Chen SL; Siegbahn PEM
    Inorg Chem; 2020 Oct; 59(20):15167-15179. PubMed ID: 33017144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Definition of the redox states of cobalt-precorrinoids: investigation of the substrate and redox specificity of CbiL from Salmonella typhimurium.
    Spencer P; Stolowich NJ; Sumner LW; Scott AI
    Biochemistry; 1998 Oct; 37(42):14917-27. PubMed ID: 9778368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that NiNi acetyl-CoA synthase is active and that the CuNi enzyme is not.
    Seravalli J; Xiao Y; Gu W; Cramer SP; Antholine WE; Krymov V; Gerfen GJ; Ragsdale SW
    Biochemistry; 2004 Apr; 43(13):3944-55. PubMed ID: 15049702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mossbauer evidence for an exchange-coupled {[Fe4S4]1+ Nip1+} A-cluster in isolated alpha subunits of acetyl-coenzyme A synthase/carbon monoxide dehydrogenase.
    Tan X; Martinho M; Stubna A; Lindahl PA; Münck E
    J Am Chem Soc; 2008 May; 130(21):6712-3. PubMed ID: 18459773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrared and EPR spectroscopic characterization of a Ni(I) species formed by photolysis of a catalytically competent Ni(I)-CO intermediate in the acetyl-CoA synthase reaction.
    Bender G; Stich TA; Yan L; Britt RD; Cramer SP; Ragsdale SW
    Biochemistry; 2010 Sep; 49(35):7516-23. PubMed ID: 20669901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantum chemical study of the reaction mechanism of acetyl-coenzyme a synthase.
    Amara P; Volbeda A; Fontecilla-Camps JC; Field MJ
    J Am Chem Soc; 2005 Mar; 127(8):2776-84. PubMed ID: 15725036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dinuclear nickel complex modeling of the Ni(d)(II)-Ni(p)(I) state of the active site of acetyl CoA synthase.
    Matsumoto T; Ito M; Kotera M; Tatsumi K
    Dalton Trans; 2010 Mar; 39(12):2995-7. PubMed ID: 20221531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autocatalytic activation of acetyl-CoA synthase.
    Maynard EL; Tan X; Lindahl PA
    J Biol Inorg Chem; 2004 Apr; 9(3):316-22. PubMed ID: 15015040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mononuclear Ni(III)-alkyl complexes (alkyl = Me and Et): relevance to the acetyl-CoA synthase and methyl-CoM reductase.
    Lee CM; Chen CH; Liao FX; Hu CH; Lee GH
    J Am Chem Soc; 2010 Jul; 132(27):9256-8. PubMed ID: 20568755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.