BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 16834383)

  • 1. Subangstrom crystallography reveals that short ionic hydrogen bonds, and not a His-Asp low-barrier hydrogen bond, stabilize the transition state in serine protease catalysis.
    Fuhrmann CN; Daugherty MD; Agard DA
    J Am Chem Soc; 2006 Jul; 128(28):9086-102. PubMed ID: 16834383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The low barrier hydrogen bond (LBHB) proposal revisited: the case of the Asp... His pair in serine proteases.
    Schutz CN; Warshel A
    Proteins; 2004 May; 55(3):711-23. PubMed ID: 15103633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The 0.83 A resolution crystal structure of alpha-lytic protease reveals the detailed structure of the active site and identifies a source of conformational strain.
    Fuhrmann CN; Kelch BA; Ota N; Agard DA
    J Mol Biol; 2004 May; 338(5):999-1013. PubMed ID: 15111063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-barrier hydrogen bond hypothesis in the catalytic triad residue of serine proteases: correlation between structural rearrangement and chemical shifts in the acylation process.
    Ishida T
    Biochemistry; 2006 May; 45(17):5413-20. PubMed ID: 16634622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel serine protease inhibition motif involving a multi-centered short hydrogen bonding network at the active site.
    Katz BA; Elrod K; Luong C; Rice MJ; Mackman RL; Sprengeler PA; Spencer J; Hataye J; Janc J; Link J; Litvak J; Rai R; Rice K; Sideris S; Verner E; Young W
    J Mol Biol; 2001 Apr; 307(5):1451-86. PubMed ID: 11292354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined high-resolution neutron and X-ray analysis of inhibited elastase confirms the active-site oxyanion hole but rules against a low-barrier hydrogen bond.
    Tamada T; Kinoshita T; Kurihara K; Adachi M; Ohhara T; Imai K; Kuroki R; Tada T
    J Am Chem Soc; 2009 Aug; 131(31):11033-40. PubMed ID: 19603802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Asp102 in the catalytic relay system of serine proteases: a theoretical study.
    Ishida T; Kato S
    J Am Chem Soc; 2004 Jun; 126(22):7111-8. PubMed ID: 15174882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do enzymes change the nature of transition states? Mapping the transition state for general acid-base catalysis of a serine protease.
    Bott RR; Chan G; Domingo B; Ganshaw G; Hsia CY; Knapp M; Murray CJ
    Biochemistry; 2003 Sep; 42(36):10545-53. PubMed ID: 12962477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme:substrate hydrogen bond shortening during the acylation phase of serine protease catalysis.
    Fodor K; Harmat V; Neutze R; Szilágyi L; Gráf L; Katona G
    Biochemistry; 2006 Feb; 45(7):2114-21. PubMed ID: 16475800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is there a weak H-bond --> LBHB transition on tetrahedral complex formation in serine proteases?
    Shokhen M; Albeck A
    Proteins; 2004 Feb; 54(3):468-77. PubMed ID: 14747995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical studies on the deacylation step of serine protease catalysis in the gas phase, in solution, and in elastase.
    Topf M; Richards WG
    J Am Chem Soc; 2004 Nov; 126(44):14631-41. PubMed ID: 15521783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 15N and 1H NMR spectroscopy of the catalytic histidine in chloromethyl ketone-inhibited complexes of serine proteases.
    Tsilikounas E; Rao T; Gutheil WG; Bachovchin WW
    Biochemistry; 1996 Feb; 35(7):2437-44. PubMed ID: 8652587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlations of the basicity of His 57 with transition state analogue binding, substrate reactivity, and the strength of the low-barrier hydrogen bond in chymotrypsin.
    Lin J; Cassidy CS; Frey PA
    Biochemistry; 1998 Aug; 37(34):11940-8. PubMed ID: 9718318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protonation-state dependence of hydrogen bond strengths and exchange rates in a serine protease catalytic triad: bovine chymotrypsinogen A.
    Markley JL; Westler WM
    Biochemistry; 1996 Aug; 35(34):11092-7. PubMed ID: 8780512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of the His57-Asp102 dyad of rat trypsin D189S in the zymogen, activated enzyme, and alpha1-proteinase inhibitor complexed forms.
    Kaslik G; Westler WM; Gráf L; Markley JL
    Arch Biochem Biophys; 1999 Feb; 362(2):254-64. PubMed ID: 9989934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process.
    Ishida T; Kato S
    J Am Chem Soc; 2003 Oct; 125(39):12035-48. PubMed ID: 14505425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The thiolase reaction mechanism: the importance of Asn316 and His348 for stabilizing the enolate intermediate of the Claisen condensation.
    Meriläinen G; Poikela V; Kursula P; Wierenga RK
    Biochemistry; 2009 Nov; 48(46):11011-25. PubMed ID: 19842716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. (His)C epsilon-H...O=C < hydrogen bond in the active sites of serine hydrolases.
    Derewenda ZS; Derewenda U; Kobos PM
    J Mol Biol; 1994 Aug; 241(1):83-93. PubMed ID: 8051710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-barrier hydrogen bonds and enzymatic catalysis.
    Cleland WW
    Arch Biochem Biophys; 2000 Oct; 382(1):1-5. PubMed ID: 11051090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 0.78 A structure of a serine protease: Bacillus lentus subtilisin.
    Kuhn P; Knapp M; Soltis SM; Ganshaw G; Thoene M; Bott R
    Biochemistry; 1998 Sep; 37(39):13446-52. PubMed ID: 9753430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.