These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16835106)

  • 21. Characterization of spectral responses of humic substances upon UV irradiation using two-dimensional correlation spectroscopy.
    Hur J; Jung KY; Jung YM
    Water Res; 2011 Apr; 45(9):2965-74. PubMed ID: 21481908
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduction of chloroform formation potential of humic acid by sonolysis and ultraviolet irradiation.
    Naffrechoux E; Combet E; Fanget B; Petrier C
    Water Res; 2003 Apr; 37(8):1948-52. PubMed ID: 12697238
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation of disinfection by-products: effect of temperature and kinetic modeling.
    Zhang XL; Yang HW; Wang XM; Fu J; Xie YF
    Chemosphere; 2013 Jan; 90(2):634-9. PubMed ID: 23026162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Factors affecting the formation of disinfection by-products during chlorination and chloramination of secondary effluent for the production of high quality recycled water.
    Doederer K; Gernjak W; Weinberg HS; Farré MJ
    Water Res; 2014 Jan; 48():218-28. PubMed ID: 24095593
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of humic and fulvic acids in the phototransformation of phenolic compounds in seawater.
    Calza P; Vione D; Minero C
    Sci Total Environ; 2014 Sep; 493():411-8. PubMed ID: 24954562
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comprehensive structural evaluation of humic substances using several fluorescence techniques before and after ozonation. Part II: evaluation of structural changes following ozonation.
    Rodríguez FJ; Schlenger P; García-Valverde M
    Sci Total Environ; 2014 Apr; 476-477():731-42. PubMed ID: 24364994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of preozonation on the adsorptivity of humic substances onto activated carbon.
    Rodríguez FJ; García-Valverde M
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):21980-21988. PubMed ID: 27539467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts--Electrophilic aromatic substitution and oxidation.
    Criquet J; Rodriguez EM; Allard S; Wellauer S; Salhi E; Joll CA; von Gunten U
    Water Res; 2015 Nov; 85():476-86. PubMed ID: 26379203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Degradation kinetics and chloropicrin formation during aqueous chlorination of dinoseb.
    Zhang TY; Xu B; Hu CY; Li M; Xia SJ; Tian FX; Gao NY
    Chemosphere; 2013 Nov; 93(11):2662-8. PubMed ID: 24034831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of fulvic substances on the distribution and migration of Hg in landfill leachate.
    Xiaoli C; Guixiang L; Jun W; Huanhuan T; Rong J; Youcai Z
    J Environ Monit; 2011 May; 13(5):1464-9. PubMed ID: 21468428
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of chlorination on the estrogenic/antiestrogenic activities of biologically treated wastewater.
    Wu QY; Hu HY; Zhao X; Sun YX
    Environ Sci Technol; 2009 Jul; 43(13):4940-5. PubMed ID: 19673289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanistic study of fulvic acid assisted propranolol photodegradation in aqueous solution.
    Makunina MP; Pozdnyakov IP; Chen Y; Grivin VP; Bazhin NM; Plyusnin VF
    Chemosphere; 2015 Jan; 119():1406-1410. PubMed ID: 25455674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of the formation of chlorination by-products in water rich in bromide and organic matter content.
    Nikolaou AD
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(11-12):2835-53. PubMed ID: 15533008
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chlorination of phenols: kinetics and formation of chloroform.
    Gallard H; von GU
    Environ Sci Technol; 2002 Mar; 36(5):884-90. PubMed ID: 11918011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of NOM characteristics on brominated organics formation by ozonation.
    Huang WJ; Chen LY; Peng HS
    Environ Int; 2004 Feb; 29(8):1049-55. PubMed ID: 14680887
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Order of functionality loss during photodegradation of aquatic humic substances.
    Thorn KA; Younger SJ; Cox LG
    J Environ Qual; 2010; 39(4):1416-28. PubMed ID: 20830929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of aquatic humic substances to DBPs formation in advanced treatment processes for conventionally treated water.
    Kim HC; Yu MJ
    J Hazard Mater; 2007 May; 143(1-2):486-93. PubMed ID: 17092645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetics of photoelectrocatalytic degradation of humic acid using B2O3.TiO2/Ti photoelectrode.
    Yan-li J; Hui-ling L; Chun-mei L
    J Environ Sci (China); 2005; 17(2):208-11. PubMed ID: 16295890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Copper binding by peat fulvic and humic acids extracted from two horizons of an ombrotrophic peat bog.
    Gondar D; Iglesias A; López R; Fiol S; Antelo JM; Arce F
    Chemosphere; 2006 Mar; 63(1):82-8. PubMed ID: 16146645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chlorination of methotrexate in water revisited: Deciphering the kinetics, novel reaction mechanisms, and unexpected microbial risks.
    Zhang S; Yin Q; Zhang S; Manoli K; Zhang L; Yu X; Feng M
    Water Res; 2022 Oct; 225():119181. PubMed ID: 36198210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.