These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 16835455)

  • 1. The vacuole system is a significant intracellular pathway for longitudinal solute transport in basidiomycete fungi.
    Darrah PR; Tlalka M; Ashford A; Watkinson SC; Fricker MD
    Eukaryot Cell; 2006 Jul; 5(7):1111-25. PubMed ID: 16835455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-to-cell transport via motile tubules in growing hyphae of a fungus.
    Shepherd VA; Orlovich DA; Ashford AE
    J Cell Sci; 1993 Aug; 105 ( Pt 4)():1173-8. PubMed ID: 8227207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possible involvement of pleiomorphic vacuolar networks in nutrient recycling in filamentous fungi.
    Shoji JY; Arioka M; Kitamoto K
    Autophagy; 2006; 2(3):226-7. PubMed ID: 16874107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motile tubular vacuoles in extramatrical mycelium and sheath hyphae of ectomycorrhizal systems.
    Allaway WG; Ashford AE
    Protoplasma; 2001; 215(1-4):218-25. PubMed ID: 11732061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The contractile vacuole network of Dictyostelium as a distinct organelle: its dynamics visualized by a GFP marker protein.
    Gabriel D; Hacker U; Köhler J; Müller-Taubenberger A; Schwartz JM; Westphal M; Gerisch G
    J Cell Sci; 1999 Nov; 112 ( Pt 22)():3995-4005. PubMed ID: 10547360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulators of GTP-binding proteins cause morphological changes in the vacuole system of the filamentous fungus, Pisolithus tinctorius.
    Hyde GJ; Davies D; Cole L; Ashford AE
    Cell Motil Cytoskeleton; 2002 Mar; 51(3):133-46. PubMed ID: 11921170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Golgi to vacuole delivery pathway in yeast: identification of a sorting determinant and required transport component.
    Cowles CR; Snyder WB; Burd CG; Emr SD
    EMBO J; 1997 May; 16(10):2769-82. PubMed ID: 9184222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtubules, but not actin microfilaments, regulate vacuole motility and morphology in hyphae of Pisolithus tinctorius.
    Hyde GJ; Davies D; Perasso L; Cole L; Ashford AE
    Cell Motil Cytoskeleton; 1999; 42(2):114-24. PubMed ID: 10215421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The vacuolar kinase Yck3 maintains organelle fragmentation by regulating the HOPS tethering complex.
    LaGrassa TJ; Ungermann C
    J Cell Biol; 2005 Jan; 168(3):401-14. PubMed ID: 15684030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging complex nutrient dynamics in mycelial networks.
    Fricker MD; Lee JA; Bebber DP; Tlalka M; Hynes J; Darrah PR; Watkinson SC; Boddy L
    J Microsc; 2008 Aug; 231(2):317-31. PubMed ID: 18778429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological solutions to transport network design.
    Bebber DP; Hynes J; Darrah PR; Boddy L; Fricker MD
    Proc Biol Sci; 2007 Sep; 274(1623):2307-15. PubMed ID: 17623638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New dynamics in an old friend: dynamic tubular vacuoles radiate through the cortical cytoplasm of red onion epidermal cells.
    Wiltshire EJ; Collings DA
    Plant Cell Physiol; 2009 Oct; 50(10):1826-39. PubMed ID: 19762337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of vacuole defects in fungi.
    Richards A; Gow NA; Veses V
    J Microbiol Methods; 2012 Oct; 91(1):155-63. PubMed ID: 22902527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intervacuole exchange in the yeast zygote: a new pathway in organelle communication.
    Weisman LS; Wickner W
    Science; 1988 Jul; 241(4865):589-91. PubMed ID: 3041591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spitzenkörper, vacuoles, ring-like structures, and mitochondria of Phanerochaete velutina hyphal tips visualized with carboxy-DFFDA, CMAC and DiOC6(3).
    Zhuang X; Tlalka M; Davies DS; Allaway WG; Watkinson SC; Ashford AE
    Mycol Res; 2009 Apr; 113(Pt 4):417-31. PubMed ID: 19114102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. V-ATPase, ScNhx1p and yeast vacuole fusion.
    Qiu QS
    J Genet Genomics; 2012 Apr; 39(4):167-71. PubMed ID: 22546538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights into the tonoplast architecture of plant vacuoles and vacuolar dynamics during osmotic stress.
    Reisen D; Marty F; Leborgne-Castel N
    BMC Plant Biol; 2005 Aug; 5():13. PubMed ID: 16080795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the V-ATPase in regulation of the vacuolar fission-fusion equilibrium.
    Baars TL; Petri S; Peters C; Mayer A
    Mol Biol Cell; 2007 Oct; 18(10):3873-82. PubMed ID: 17652457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast.
    Vida TA; Emr SD
    J Cell Biol; 1995 Mar; 128(5):779-92. PubMed ID: 7533169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vacuolar membrane dynamics revealed by GFP-AtVam3 fusion protein.
    Uemura T; Yoshimura SH; Takeyasu K; Sato MH
    Genes Cells; 2002 Jul; 7(7):743-53. PubMed ID: 12081650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.