These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16835654)

  • 1. General method to derive the relationship between two sets of Zernike coefficients corresponding to different aperture sizes.
    Shu H; Luo L; Han G; Coatrieux JL
    J Opt Soc Am A Opt Image Sci Vis; 2006 Aug; 23(8):1960-6. PubMed ID: 16835654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaling Zernike expansion coefficients to different pupil sizes.
    Schwiegerling J
    J Opt Soc Am A Opt Image Sci Vis; 2002 Oct; 19(10):1937-45. PubMed ID: 12365613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validity of scaling zernike coefficients to a larger diameter for refractive surgery.
    Dai GM
    J Refract Surg; 2011 Nov; 27(11):837-41. PubMed ID: 22045575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaling pseudo-Zernike expansion coefficients to different pupil sizes.
    Schwiegerling J
    Opt Lett; 2011 Aug; 36(16):3076-8. PubMed ID: 21847165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transformation of Zernike coefficients: a Fourier-based method for scaled, translated, and rotated wavefront apertures.
    Tatulli E
    J Opt Soc Am A Opt Image Sci Vis; 2013 Apr; 30(4):726-32. PubMed ID: 23595334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zernike coefficients from wavefront curvature data.
    Mahajan VN; Acosta E
    Appl Opt; 2020 Aug; 59(22):G120-G128. PubMed ID: 32749324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laboratory study of aberration calculation in underwater turbulence using Shack-Hartmann wavefront sensor and Zernike polynomials.
    Aghajani A; Kashani FD; Yousefi M
    Opt Express; 2024 Apr; 32(9):15978-15992. PubMed ID: 38859236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orthonormal polynomials in wavefront analysis: error analysis.
    Dai GM; Mahajan VN
    Appl Opt; 2008 Jul; 47(19):3433-45. PubMed ID: 18594590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Matrix method to find a new set of Zernike coefficients from an original set when the aperture radius is changed.
    Campbell CE
    J Opt Soc Am A Opt Image Sci Vis; 2003 Feb; 20(2):209-17. PubMed ID: 12570287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full-aperture wavefront reconstruction from annular subaperture interferometric data by use of Zernike annular polynomials and a matrix method for testing large aspheric surfaces.
    Hou X; Wu F; Yang L; Wu S; Chen Q
    Appl Opt; 2006 May; 45(15):3442-55. PubMed ID: 16708088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of annular wavefront interpretation with Zernike circle polynomials and annular polynomials.
    Hou X; Wu F; Yang L; Chen Q
    Appl Opt; 2006 Dec; 45(35):8893-901. PubMed ID: 17119589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Method of reconstructing wavefront aberrations by use of Zernike polynomials in radial shearing interferometers.
    Jeong TM; Ko DK; Lee J
    Opt Lett; 2007 Feb; 32(3):232-4. PubMed ID: 17215929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials.
    Robert Iskander D; Davis BA; Collins MJ; Franklin R
    Ophthalmic Physiol Opt; 2007 May; 27(3):245-55. PubMed ID: 17470237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zernike aberration coefficients transformed to and from Fourier series coefficients for wavefront representation.
    Dai GM
    Opt Lett; 2006 Feb; 31(4):501-3. PubMed ID: 16496900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical method for the transformation of Zernike polynomial coefficients for scaled, rotated, and translated pupils.
    Li L; Zhang B; Xu Y; Wang D
    Appl Opt; 2018 Dec; 57(34):F22-F30. PubMed ID: 30645277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orthonormal polynomials in wavefront analysis: analytical solution.
    Mahajan VN; Dai GM
    J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2994-3016. PubMed ID: 17767271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orthonormal curvature polynomials over a unit circle: basis set derived from curvatures of Zernike polynomials.
    Zhao C; Burge JH
    Opt Express; 2013 Dec; 21(25):31430-43. PubMed ID: 24514717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of numerical orthogonal transformation for the Zernike analysis of lateral shearing interferograms.
    Dai F; Tang F; Wang X; Feng P; Sasaki O
    Opt Express; 2012 Jan; 20(2):1530-44. PubMed ID: 22274496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Normal-eye Zernike coefficients and root-mean-square wavefront errors.
    Salmon TO; van de Pol C
    J Cataract Refract Surg; 2006 Dec; 32(12):2064-74. PubMed ID: 17137985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orthonormal vector general polynomials derived from the Cartesian gradient of the orthonormal Zernike-based polynomials.
    Mafusire C; Krüger TPJ
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jun; 35(6):840-849. PubMed ID: 29877326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.