These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 16835869)

  • 1. Determining the binding affinities of phenolic compounds to proteins by quenching of the intrinsic tryptophan fluorescence.
    Rawel HM; Frey SK; Meidtner K; Kroll J; Schweigert FJ
    Mol Nutr Food Res; 2006 Aug; 50(8):705-13. PubMed ID: 16835869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of selected phenolic compounds to proteins.
    Rawel HM; Meidtner K; Kroll J
    J Agric Food Chem; 2005 May; 53(10):4228-35. PubMed ID: 15884865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary alpha-amylase (HSA) by fluorescence quenching.
    Soares S; Mateus N; Freitas Vd
    J Agric Food Chem; 2007 Aug; 55(16):6726-35. PubMed ID: 17636939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of flavonoids with bovine serum albumin: a fluorescence quenching study.
    Papadopoulou A; Green RJ; Frazier RA
    J Agric Food Chem; 2005 Jan; 53(1):158-63. PubMed ID: 15631523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quenching of tryptophan fluorescence in various proteins by a series of small nickel complexes.
    Crouse HF; Potoma J; Nejrabi F; Snyder DL; Chohan BS; Basu S
    Dalton Trans; 2012 Mar; 41(9):2720-31. PubMed ID: 22249654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening, identification, and potential interaction of active compounds from Eucommia ulmodies leaves binding with bovine serum albumin.
    Zhang Y; Peng M; Liu L; Shi S; Peng S
    J Agric Food Chem; 2012 Mar; 60(12):3119-25. PubMed ID: 22385161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of phenolic compounds with bovine serum albumin (BSA) and α-amylase and their relationship to astringency perception.
    Ferrer-Gallego R; Gonçalves R; Rivas-Gonzalo JC; Escribano-Bailón MT; de Freitas V
    Food Chem; 2012 Nov; 135(2):651-8. PubMed ID: 22868141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of loratadine with serum albumins studied by fluorescence quenching method.
    Zhou B; Qi ZD; Xiao Q; Dong JX; Zhang YZ; Liu Y
    J Biochem Biophys Methods; 2007 Aug; 70(5):743-7. PubMed ID: 17482267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the interaction between 3 flavonoid compounds and alpha-amylase by fluorescence spectroscopy and enzymatic kinetics.
    Li Y; Gao F; Gao F; Shan F; Bian J; Zhao C
    J Food Sci; 2009 Apr; 74(3):C199-203. PubMed ID: 19397703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of tannic acid and its derivatives (ellagic and gallic acid) with calf thymus DNA and bovine serum albumin using spectroscopic method.
    Labieniec M; Gabryelak T
    J Photochem Photobiol B; 2006 Jan; 82(1):72-8. PubMed ID: 16263304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [An approach to determining the effect on salivary amylase by green tea extract].
    Liu Z; Li M; Zhang G
    Zhonghua Kou Qiang Yi Xue Za Zhi; 1995 Mar; 30(2):89-91, 128. PubMed ID: 7544258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific interactions of quercetin and other flavonoids with target proteins are revealed by elicited fluorescence.
    Gutzeit HO; Henker Y; Kind B; Franz A
    Biochem Biophys Res Commun; 2004 May; 318(2):490-5. PubMed ID: 15120627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aleppo tannin: structural analysis and salivary amylase inhibition.
    Zajácz A; Gyémánt G; Vittori N; Kandra L
    Carbohydr Res; 2007 Apr; 342(5):717-23. PubMed ID: 17217934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans.
    Olthof MR; Hollman PC; Buijsman MN; van Amelsvoort JM; Katan MB
    J Nutr; 2003 Jun; 133(6):1806-14. PubMed ID: 12771321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron absorption and phenolic compounds: importance of different phenolic structures.
    Brune M; Rossander L; Hallberg L
    Eur J Clin Nutr; 1989 Aug; 43(8):547-57. PubMed ID: 2598894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating noncovalent interactions of rutin-serum albumin by capillary electrophoresis-frontal analysis.
    Lu QH; Ba CD; Chen DY
    J Pharm Biomed Anal; 2008 Aug; 47(4-5):888-91. PubMed ID: 18436413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of anthracycline disaccharide with human serum albumin: investigation by fluorescence spectroscopic technique and modeling studies.
    Cui F; Qin L; Zhang G; Liu Q; Yao X; Lei B
    J Pharm Biomed Anal; 2008 Nov; 48(3):1029-36. PubMed ID: 18722067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic studies on the interaction of a water-soluble cationic porphyrin with proteins.
    Ma HM; Chen X; Zhang N; Han YY; Wu D; Du B; Wei Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Apr; 72(3):465-9. PubMed ID: 19054710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on interaction between Vitamin B12 and human serum albumin.
    Hou HN; Qi ZD; Ouyang YW; Liao FL; Zhang Y; Liu Y
    J Pharm Biomed Anal; 2008 May; 47(1):134-9. PubMed ID: 18261869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory effects of plant phenols on the activity of selected enzymes.
    Rohn S; Rawel HM; Kroll J
    J Agric Food Chem; 2002 Jun; 50(12):3566-71. PubMed ID: 12033830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.