BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 16835870)

  • 1. Metabolism of quercetin and rutin by the pig caecal microflora prepared by freeze-preservation.
    Keppler K; Hein EM; Humpf HU
    Mol Nutr Food Res; 2006 Aug; 50(8):686-95. PubMed ID: 16835870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deconjugation and degradation of flavonol glycosides by pig cecal microbiota characterized by Fluorescence in situ hybridization (FISH).
    Hein EM; Rose K; van't Slot G; Friedrich AW; Humpf HU
    J Agric Food Chem; 2008 Mar; 56(6):2281-90. PubMed ID: 18303842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of the pig caecum model to mimic the human intestinal metabolism of hispidulin and related compounds.
    Labib S; Hummel S; Richling E; Humpf HU; Schreier P
    Mol Nutr Food Res; 2006 Jan; 50(1):78-86. PubMed ID: 16317785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pig caecum model: a suitable tool to study the intestinal metabolism of flavonoids.
    Labib S; Erb A; Kraus M; Wickert T; Richling E
    Mol Nutr Food Res; 2004 Sep; 48(4):326-32. PubMed ID: 15497184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro catabolism of rutin by human fecal bacteria and the antioxidant capacity of its catabolites.
    Jaganath IB; Mullen W; Lean ME; Edwards CA; Crozier A
    Free Radic Biol Med; 2009 Oct; 47(8):1180-9. PubMed ID: 19647790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora.
    Keppler K; Humpf HU
    Bioorg Med Chem; 2005 Sep; 13(17):5195-205. PubMed ID: 15963727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of thermal processing on the flavonols rutin and quercetin.
    Buchner N; Krumbein A; Rohn S; Kroh LW
    Rapid Commun Mass Spectrom; 2006; 20(21):3229-35. PubMed ID: 17016866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro degradation of the flavonol quercetin and of quercetin glycosides in the porcine hindgut.
    Cermak R; Breves GM
    Arch Anim Nutr; 2006 Apr; 60(2):180-9. PubMed ID: 16649580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consumption of polyphenol concentrate with dietary fructo-oligosaccharides enhances cecal metabolism of quercetin glycosides in rats.
    Juśkiewicz J; Milala J; Jurgoński A; Król B; Zduńczyk Z
    Nutrition; 2011 Mar; 27(3):351-7. PubMed ID: 20541367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of rutin deglycosylated metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS.
    Yang J; Qian D; Jiang S; Shang EX; Guo J; Duan JA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Jun; 898():95-100. PubMed ID: 22583754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioactivation of flavonoid diglycosides by chicken cecal bacteria.
    Iqbal MF; Zhu WY
    FEMS Microbiol Lett; 2009 Jun; 295(1):30-41. PubMed ID: 19473248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioconversion of quercetin and rutin and the cytotoxicity activities of the transformed products.
    Araújo KC; de M B Costa EM; Pazini F; Valadares MC; de Oliveira V
    Food Chem Toxicol; 2013 Jan; 51():93-6. PubMed ID: 23000251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quercetin metabolites in plasma of rats fed diets containing rutin or quercetin.
    Manach C; Morand C; Texier O; Favier ML; Agullo G; Demigné C; Régérat F; Rémésy C
    J Nutr; 1995 Jul; 125(7):1911-22. PubMed ID: 7616308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation and metabolism of catechin, epigallocatechin-3-gallate (EGCG), and related compounds by the intestinal microbiota in the pig cecum model.
    van't Slot G; Humpf HU
    J Agric Food Chem; 2009 Sep; 57(17):8041-8. PubMed ID: 19670865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The microbial metabolism of condensed (+)-catechins by rat-caecal microflora.
    Groenewoud G; Hundt HK
    Xenobiotica; 1986 Feb; 16(2):99-107. PubMed ID: 3962338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and quantification of flavonoids and hydroxycinnamic acids in curly kale (Brassica oleracea L. Convar. acephala Var. sabellica) by HPLC-DAD-ESI-MSn.
    Olsen H; Aaby K; Borge GI
    J Agric Food Chem; 2009 Apr; 57(7):2816-25. PubMed ID: 19253943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the in vitro formation of trimethylarsine sulfide from dimethylthioarsinic acid in anaerobic microflora of mouse cecum using HPLC-ICP-MS and HPLC-ESI-MS.
    Kubachka KM; Kohan MC; Herbin-Davis K; Creed JT; Thomas DJ
    Toxicol Appl Pharmacol; 2009 Sep; 239(2):137-43. PubMed ID: 19133283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioavailability of the flavonol quercetin in cows after intraruminal application of quercetin aglycone and rutin.
    Berger LM; Wein S; Blank R; Metges CC; Wolffram S
    J Dairy Sci; 2012 Sep; 95(9):5047-5055. PubMed ID: 22916908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of bile acids on formation of the mutagen, quercetin, from two flavonol glycoside precursors by human gut bacterial preparations.
    Mader JA; Macdonald IA
    Mutat Res; 1985 Mar; 155(3):99-104. PubMed ID: 3883158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intestinal absorption and metabolism of a soluble flavonoid, alphaG-rutin, in portal cannulated rats.
    Matsumoto M; Chiji H; Hara H
    Free Radic Res; 2005 Oct; 39(10):1139-46. PubMed ID: 16298739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.