These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16835889)

  • 1. The determination of enantiomeric excess of valine by ODESSA solid-state NMR experiment.
    Tadeusiak EJ; Ciesielski W; Olejniczak S
    Magn Reson Chem; 2006 Oct; 44(10):905-8. PubMed ID: 16835889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rapid 1H NMR assay for enantiomeric excess of alpha-substituted aldehydes.
    Chi Y; Peelen TJ; Gellman SH
    Org Lett; 2005 Aug; 7(16):3469-72. PubMed ID: 16048319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneity in the conformation of valine in the elastin mimetic (LGGVG)6 as shown by solid-state 13C NMR SPEctroscopy.
    Ohgo K; Niemczura WP; Ashida J; Okonogi M; Asakura T; Kumashiro KK
    Biomacromolecules; 2006 Dec; 7(12):3306-10. PubMed ID: 17154456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pattern-based recognition for determination of enantiomeric excess, using chiral auxiliary induced chemical shift perturbation NMR.
    Lei X; Liu L; Chen X; Yu X; Ding L; Zhang A
    Org Lett; 2010 Jun; 12(11):2540-3. PubMed ID: 20441202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Both experimental and theoretical investigations of solid-state 17O NMR for L-valine and L-isoleucine.
    Yamada K; Nemoto T; Asanuma M; Honda H; Yamazaki T; Hirota H
    Solid State Nucl Magn Reson; 2006 Oct; 30(3-4):182-91. PubMed ID: 17074470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved method for determining enantiomeric excess by (13)C-NMR in chiral liquid crystal media.
    Marathias VM; Tate PA; Papaioannou N; Massefski W
    Chirality; 2010 Oct; 22(9):838-43. PubMed ID: 20803748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A solid-state 17O NMR study of L -phenylalanine and L -valine hydrochlorides.
    Yamada K; Shimizu T; Ohki S; Yamazaki T
    Magn Reson Chem; 2008 Mar; 46(3):226-34. PubMed ID: 18236436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transitioning enantioselective indicator displacement assays for alpha-amino acids to protocols amenable to high-throughput screening.
    Leung D; Anslyn EV
    J Am Chem Soc; 2008 Sep; 130(37):12328-33. PubMed ID: 18714993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ measurement of the enantiomeric excess of alcohols and amines under asymmetric reduction reaction by 1H NMR.
    Ye X; Lei X; Chen Z; Zhang L; Zhang A
    Org Lett; 2010 Jul; 12(14):3238-41. PubMed ID: 20545309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isotopic labeling for determination of enantiomeric purity by 2H NMR spectroscopy.
    Jackman H; Marsden SP; Shapland P; Barrett S
    Org Lett; 2007 Dec; 9(25):5179-82. PubMed ID: 18001040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptides and the development of double- and triple-resonance solid-state NMR of aligned samples.
    Sinha N; Grant CV; Rotondi KS; Feduik-Rotondi L; Gierasch LM; Opella SJ
    J Pept Res; 2005 Jun; 65(6):605-20. PubMed ID: 15885119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear magnetic resonance signaling of molecular chiral information using an achiral reagent.
    Shundo A; Labuta J; Hill JP; Ishihara S; Ariga K
    J Am Chem Soc; 2009 Jul; 131(27):9494-5. PubMed ID: 19545158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of solid state form of troglitazone by solid state NMR spectroscopy.
    Suzuki N; Kawasaki T
    J Pharm Biomed Anal; 2005 Feb; 37(1):177-81. PubMed ID: 15664759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the enantiomeric excess of chiral carboxylic acids by 31P NMR with phosphorylated derivatizing agents from C2-symmetrical diamines containing the (S)-alpha-phenylethyl group.
    Mastranzo VM; Quintero L; de Parrodi CA
    Chirality; 2007 Jun; 19(6):503-7. PubMed ID: 17437261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tertiary aromatic amide for memory of chirality: access to enantioenriched alpha-substituted valine.
    Branca M; Gori D; Guillot R; Alezra V; Kouklovsky C
    J Am Chem Soc; 2008 May; 130(18):5864-5. PubMed ID: 18410101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new method for distinguishing between enantiomers and racemates and assignment of enantiomeric purity by means of solid-state NMR. Examples from oxazaphosphorinanes.
    Potrzebowski MJ; Tadeusiak E; Misiura K; Ciesielski W; Bujacz G; Tekely P
    Chemistry; 2002 Nov; 8(21):5007-11. PubMed ID: 12489534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of enantiomeric excess and concentration of unprotected amino acids, amines, amino alcohols, and carboxylic acids by competitive binding assays with a chiral scandium complex.
    Mei X; Wolf C
    J Am Chem Soc; 2006 Oct; 128(41):13326-7. PubMed ID: 17031923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of enantiomeric composition of (-)-(R)-2-tert-butyltetrahydroimidazolidin-4-one by polarimetry, 1H NMR, and chiral SFC.
    Garcia-Martinez C; Hernandez G; Biba M; Welch CJ
    Chirality; 2005 May; 17(4):212-7. PubMed ID: 15828029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereospecific isotopic labeling of methyl groups for NMR spectroscopic studies of high-molecular-weight proteins.
    Gans P; Hamelin O; Sounier R; Ayala I; DurĂ¡ MA; Amero CD; Noirclerc-Savoye M; Franzetti B; Plevin MJ; Boisbouvier J
    Angew Chem Int Ed Engl; 2010 Mar; 49(11):1958-62. PubMed ID: 20157899
    [No Abstract]   [Full Text] [Related]  

  • 20. Chiral NMR discrimination of amines: analysis of secondary, tertiary, and prochiral amines using (18-crown-6)-2,3,11,12-tetracarboxylic acid.
    Lovely AE; Wenzel TJ
    Chirality; 2008 Mar; 20(3-4):370-8. PubMed ID: 17663436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.