These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 168359)

  • 1. Extracellular potassium changes in the spinal cord of the cat and their relation to slow potentials, active transport and impulse transmission.
    Krív N; Syková E; Vyklický L
    J Physiol; 1975 Jul; 249(1):167-82. PubMed ID: 168359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of K+ accumulation reveals privileged extracellular region in the vicinity of glial cells in situ.
    Chvátal A; Anderová M; Syková E
    J Neurosci Res; 2004 Dec; 78(5):668-82. PubMed ID: 15478195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presynaptic and postsynaptic effects of local cathodal DC polarization within the spinal cord in anaesthetized animal preparations.
    Bolzoni F; Jankowska E
    J Physiol; 2015 Feb; 593(4):947-66. PubMed ID: 25416625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletion of aquaporin-4 increases extracellular K(+) concentration during synaptic stimulation in mouse hippocampus.
    Haj-Yasein NN; Bugge CE; Jensen V; Østby I; Ottersen OP; Hvalby Ø; Nagelhus EA
    Brain Struct Funct; 2015 Jul; 220(4):2469-74. PubMed ID: 24744149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes of extracellular potassium activity in isolated spinal cord of frog under high Mg(2+) concentration.
    Syková E; Vyklický L
    Neurosci Lett; 1977 Mar; 4(3-4):161-5. PubMed ID: 19604937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Ionic Diffusion on Extracellular Potentials in Neural Tissue.
    Halnes G; Mäki-Marttunen T; Keller D; Pettersen KH; Andreassen OA; Einevoll GT
    PLoS Comput Biol; 2016 Nov; 12(11):e1005193. PubMed ID: 27820827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion in brain extracellular space.
    Syková E; Nicholson C
    Physiol Rev; 2008 Oct; 88(4):1277-340. PubMed ID: 18923183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps.
    Ransom CB; Ransom BR; Sontheimer H
    J Physiol; 2000 Feb; 522 Pt 3(Pt 3):427-42. PubMed ID: 10713967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity-induced potassium accumulation and its uptake in frog ventricular muscle.
    Martin G; Morad M
    J Physiol; 1982 Jul; 328():205-27. PubMed ID: 6982328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular potassium accumulation in the frog spinal cord induced by stimulation of the skin and ventrolateral columns.
    Czéh G; Kríz N; Syková E
    J Physiol; 1981 Nov; 320():57-72. PubMed ID: 6976435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The supernormal period of the cerebellar parallel fibers effects of [Ca2+]o and [K+]o.
    Malenka RC; Kocsis JD; Waxman SG
    Pflugers Arch; 1983 May; 397(3):176-83. PubMed ID: 6878005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of potassium dynamics in mammalian brain tissue.
    Gardner-Medwin AR
    J Physiol; 1983 Feb; 335():393-426. PubMed ID: 6875885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The periaxonal space of crayfish giant axons.
    Shrager P; Starkus JC; Lo MV; Peracchia C
    J Gen Physiol; 1983 Aug; 82(2):221-44. PubMed ID: 6311939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analysis of the epileptogenic potency of CO2+- its ability to induce acute convulsive activity in the isolated frog spinal cord.
    Buchert-Rau B; Sonnhof U
    Pflugers Arch; 1982 Jul; 394(1):1-11. PubMed ID: 6289250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow waves and unitary activity evoked by cutaneous stimulation from the rat cuneate nucleus.
    Armstrong-James M; Ewart WR
    Exp Brain Res; 1980; 39(3):327-40. PubMed ID: 6249631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary afferent activity, putative excitatory transmitters and extracellular potassium levels in frog spinal cord.
    Davidoff RA; Hackman JC; Holohean AM; Vega JL; Zhang DX
    J Physiol; 1988 Mar; 397():291-306. PubMed ID: 3261795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of carbon dioxide on extracellular potassium accumulation and volume in isolated frog spinal cord.
    Syková E; Orkand RK; Chvátal A; Hájek I; Kríz N
    Pflugers Arch; 1988 Jul; 412(1-2):183-7. PubMed ID: 3140216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow depolarizing potentials recorded from glial cells in the rat superficial dorsal horn.
    Takahashi T; Tsuruhara H
    J Physiol; 1987 Jul; 388():597-610. PubMed ID: 2821245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in extracellular potassium concentration in cat spinal cord in response to innocuous and noxious stimulation of legs with healthy and inflamed knee joints.
    Heinemann U; Schaible HG; Schmidt RF
    Exp Brain Res; 1990; 79(2):283-92. PubMed ID: 2323375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concerning the ionic basis of presynaptic inhibition.
    Davidson N; Simpson HK
    Experientia; 1976 Mar; 32(3):348-9. PubMed ID: 1253905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.