These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 168359)

  • 1. Extracellular potassium changes in the spinal cord of the cat and their relation to slow potentials, active transport and impulse transmission.
    Krív N; Syková E; Vyklický L
    J Physiol; 1975 Jul; 249(1):167-82. PubMed ID: 168359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. K+ changes in the extracellular space of the spinal cord and their physiological role.
    Syková E
    J Exp Biol; 1981 Dec; 95():93-109. PubMed ID: 6278046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes of extracellular potassium concentration induced by neuronal activity in the sinal cord of the cat.
    Kríz N; Syková E; Ujec E; Vyklický L
    J Physiol; 1974 Apr; 238(1):1-15. PubMed ID: 4838796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular potassium accumulation in the frog spinal cord induced by stimulation of the skin and ventrolateral columns.
    Czéh G; Kríz N; Syková E
    J Physiol; 1981 Nov; 320():57-72. PubMed ID: 6976435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The clearing of excess potassium from extracellular space in spinal cord and cerebral cortex.
    Cordingley GE; Somjen GG
    Brain Res; 1978 Aug; 151(2):291-306. PubMed ID: 209864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dorsal root potentials and changes in extracellular potassium in the spinal cord of the frog.
    Nicoll RA
    J Physiol; 1979 May; 290(2):113-27. PubMed ID: 224169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular potassium activity, intracellular and extracellular potential responses in the spinal cord.
    Lothman EW; Somjen GG
    J Physiol; 1975 Oct; 252(1):115-36. PubMed ID: 1202194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of spinal cord transmission by changes in extracellular K+ activity and extracellular volume.
    Syková E
    Can J Physiol Pharmacol; 1987 May; 65(5):1058-66. PubMed ID: 3621032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific and nonspecific mechanisms involved in generation of PAD of group Ia afferents in cat spinal cord.
    Jiménez I; Rudomín P; Solodkin M; Vyklický L
    J Neurophysiol; 1984 Nov; 52(5):921-40. PubMed ID: 6096522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific and potassium components in the depolarization of the la afferents in the spinal cord of the cat.
    Jiménez I; Rudomin P; Solodkin M; Vyklicky L
    Brain Res; 1983 Aug; 272(1):179-84. PubMed ID: 6311337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The contribution of increases in extracellular potassium to primary afferent depolarization in the bullfrog spinal cord.
    Shefner SA; Levy RA
    Brain Res; 1981 Feb; 205(2):321-35. PubMed ID: 6258714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Extracellular pH, [K+] and synaptic transmission in the dorsal horn of spinal cord of rats in hypercapnia].
    Motin VG; Tarakanov IA; Semkina GA; Kaliuzhnyĭ LV
    Biull Eksp Biol Med; 1992 Jan; 113(1):8-10. PubMed ID: 1327280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation-evoked changes in extracellular pH, calcium and potassium activity in the frog spinal cord.
    Chvátal A; Jendelová P; Kríz N; Syková E
    Physiol Bohemoslov; 1988; 37(3):203-12. PubMed ID: 2975788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible relationships between extracellular potassium activity and presynaptic inhibition in the spinal cord of the cat.
    ten Bruggencate G; Lux HD; Liebl L
    Pflugers Arch; 1974; 349(4):301-17. PubMed ID: 4472242
    [No Abstract]   [Full Text] [Related]  

  • 15. Extracellular diffusion parameters in spinal cord and filum terminale of the frog.
    Prokopová-Kubinová S; Syková E
    J Neurosci Res; 2000 Nov; 62(4):530-8. PubMed ID: 11070496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ionic basis of the resting potential and a slow depolarizing response in Rohon-Beard neurones of Xenopus tadpoles.
    Spitzer NC
    J Physiol; 1976 Feb; 255(1):105-35. PubMed ID: 1255512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of osmotic stress on potassium accumulation around glial cells and extracellular space volume in rat spinal cord slices.
    Vargová L; Chvátal A; Anderová M; Kubinová S; Ziak D; Syková E
    J Neurosci Res; 2001 Jul; 65(2):129-38. PubMed ID: 11438982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular accumulation of K+ evoked by activity of primary afferent fibers in the cuneate nucleus and dorsal horn of cats.
    Krnjević K; Morris ME
    Can J Physiol Pharmacol; 1974 Aug; 52(4):852-71. PubMed ID: 4425984
    [No Abstract]   [Full Text] [Related]  

  • 19. Role of endogenous opiates and extracellular K+ accumulation in the inhibition of frog spinal reflexes by electrical skin stimulation.
    Syková E; Kríz N; Hájek I
    Physiol Bohemoslov; 1985; 34(6):548-61. PubMed ID: 3003770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular K + activity and slow potential changes in spinal cord and medulla.
    Krnjević K; Morris ME
    Can J Physiol Pharmacol; 1972 Dec; 50(12):1214-7. PubMed ID: 4655054
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.