These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16836641)

  • 1. On the postnatal development of the striate cortex (V1) in the tree shrew (Tupaia belangeri).
    Drenhaus U; Rager G; Eggli P; Kretz R
    Eur J Neurosci; 2006 Jul; 24(2):479-90. PubMed ID: 16836641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional organization of the ventral lateral geniculate complex of the tree shrew (Tupaia belangeri): II. Connections with the cortex, thalamus, and brainstem.
    Conley M; Friederich-Ecsy B
    J Comp Neurol; 1993 Feb; 328(1):21-42. PubMed ID: 7679121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topographic organization of the orientation column system in the striate cortex of the tree shrew (Tupaia glis). II. Deoxyglucose mapping.
    Humphrey AL; Skeen LC; Norton TT
    J Comp Neurol; 1980 Aug; 192(3):549-66. PubMed ID: 7419744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. c-Fos expression in the visual system of the tree shrew (Tupaia belangeri).
    Poveda A; Kretz R
    J Chem Neuroanat; 2009 Jul; 37(4):214-28. PubMed ID: 19481006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinotopic organization of the primary visual cortex of flying foxes (Pteropus poliocephalus and Pteropus scapulatus).
    Rosa MG; Schmid LM; Krubitzer LA; Pettigrew JD
    J Comp Neurol; 1993 Sep; 335(1):55-72. PubMed ID: 8408773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of acetylcholinesterase activity in the lateral geniculate nucleus.
    Hutchins JB; Casagrande VA
    J Comp Neurol; 1988 Sep; 275(2):241-53. PubMed ID: 3220976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic connections in tree shrew V1 imply a global to local mapping.
    Alexander DM; Bourke PD; Sheridan P; Konstandatos O; Wright JJ
    Vision Res; 2004 Apr; 44(9):857-76. PubMed ID: 14992831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional structure and evolution of primate primary visual cortex.
    Bush EC; Allman JM
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Nov; 281(1):1088-94. PubMed ID: 15470669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An evolutionary scaling law for the primate visual system and its basis in cortical function.
    Stevens CF
    Nature; 2001 May; 411(6834):193-5. PubMed ID: 11346795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experience-dependent orientation plasticity in the visual cortex of rats chronically exposed to a single orientation.
    O'Hashi K; Miyashita M; Tanaka S
    Neurosci Res; 2007 May; 58(1):86-90. PubMed ID: 17300846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postnatal development of 3H-rauwolscine binding sites in the dorsal lateral geniculate nucleus and the striate cortex of the tree shrew (Tupaia belangeri).
    Flügge G; Fuchs E; Kretz R
    Anat Embryol (Berl); 1993 Jan; 187(1):99-106. PubMed ID: 8381622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laminar organization of ON and OFF regions and ocular dominance in the striate cortex of the tree shrew (Tupaia belangeri).
    Kretz R; Rager G; Norton TT
    J Comp Neurol; 1986 Sep; 251(1):135-45. PubMed ID: 3760256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial scene representations formed by self-organizing learning in a hippocampal extension of the ventral visual system.
    Rolls ET; Tromans JM; Stringer SM
    Eur J Neurosci; 2008 Nov; 28(10):2116-27. PubMed ID: 19046392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective visual responses to expansion and rotation in the human MT complex revealed by functional magnetic resonance imaging adaptation.
    Wall MB; Lingnau A; Ashida H; Smith AT
    Eur J Neurosci; 2008 May; 27(10):2747-57. PubMed ID: 18547254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Limits of intraocular and interocular transfer in pigeons.
    Ortega LJ; Stoppa K; Güntürkün O; Troje NF
    Behav Brain Res; 2008 Nov; 193(1):69-78. PubMed ID: 18547658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paucity of horizontal connections for binocular vision in V1 of naturally strabismic macaques: Cytochrome oxidase compartment specificity.
    Tychsen L; Wong AM; Burkhalter A
    J Comp Neurol; 2004 Jun; 474(2):261-75. PubMed ID: 15164426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Occipital-callosal pathways in children: Validation and atlas development.
    Dougherty RF; Ben-Shachar M; Deutsch G; Potanina P; Bammer R; Wandell BA
    Ann N Y Acad Sci; 2005 Dec; 1064():98-112. PubMed ID: 16394151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topographic and laminar maturation of striate cortex in early postnatal marmoset monkeys, as revealed by neurofilament immunohistochemistry.
    Bourne JA; Warner CE; Rosa MG
    Cereb Cortex; 2005 Jun; 15(6):740-8. PubMed ID: 15342427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision.
    Palmer SM; Rosa MG
    Eur J Neurosci; 2006 Oct; 24(8):2389-405. PubMed ID: 17042793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial frequency integration for binocular correspondence in macaque area V4.
    Kumano H; Tanabe S; Fujita I
    J Neurophysiol; 2008 Jan; 99(1):402-8. PubMed ID: 17959744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.