These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 16836732)

  • 21. Smart biomaterials for tissue engineering of cartilage.
    Stoop R
    Injury; 2008 Apr; 39 Suppl 1():S77-87. PubMed ID: 18313475
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aging Schwann cells in vitro.
    Funk D; Fricke C; Schlosshauer B
    Eur J Cell Biol; 2007 Apr; 86(4):207-19. PubMed ID: 17307274
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomimetic approaches to protein and gene delivery for tissue regeneration.
    Andreadis ST; Geer DJ
    Trends Biotechnol; 2006 Jul; 24(7):331-7. PubMed ID: 16716420
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biochemical engineering nerve conduits using peptide amphiphiles.
    Tan A; Rajadas J; Seifalian AM
    J Control Release; 2012 Nov; 163(3):342-52. PubMed ID: 22910143
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel materials for bone and cartilage regeneration.
    Bonzani IC; George JH; Stevens MM
    Curr Opin Chem Biol; 2006 Dec; 10(6):568-75. PubMed ID: 17011226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New artificial nerve conduits made with photocrosslinked hyaluronic acid for peripheral nerve regeneration.
    Sakai Y; Matsuyama Y; Takahashi K; Sato T; Hattori T; Nakashima S; Ishiguro N
    Biomed Mater Eng; 2007; 17(3):191-7. PubMed ID: 17502696
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GDNF-chitosan blended nerve guides: a functional study.
    Patel M; Mao L; Wu B; Vandevord PJ
    J Tissue Eng Regen Med; 2007; 1(5):360-7. PubMed ID: 18038430
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study of biocompatibility of small intestinal submucosa (SIS) with Schwann cells in vitro.
    Su Y; Zeng BF; Zhang CQ; Zhang KG; Xie XT
    Brain Res; 2007 May; 1145():41-7. PubMed ID: 17367764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diffusion of bioactive molecules through the walls of the medial tissue-engineered hybrid ePTFE grafts for applications in designs of vascular tissue regeneration.
    Noh I; Choi YJ; Son Y; Kim CH; Hong SH; Hong CM; Shin IS; Park SN; Park BY
    J Biomed Mater Res A; 2006 Dec; 79(4):943-53. PubMed ID: 16941597
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peripheral nerve regeneration using a three dimensionally cultured schwann cell conduit.
    Kim SM; Lee SK; Lee JH
    J Craniofac Surg; 2007 May; 18(3):475-88. PubMed ID: 17538306
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Actively regulating bioengineered tissue and organ formation.
    Mooney DJ; Boontheekul T; Chen R; Leach K
    Orthod Craniofac Res; 2005 Aug; 8(3):141-4. PubMed ID: 16022715
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Orthopaedic tissue engineering and bone regeneration.
    Dickson G; Buchanan F; Marsh D; Harkin-Jones E; Little U; McCaigue M
    Technol Health Care; 2007; 15(1):57-67. PubMed ID: 17264413
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel approach to align adult neural stem cells on micropatterned conduits for peripheral nerve regeneration: a feasibility study.
    Hsu SH; Su CH; Chiu IM
    Artif Organs; 2009 Jan; 33(1):26-35. PubMed ID: 19178438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Standardized criterion to analyze and directly compare various materials and models for peripheral nerve regeneration.
    Yannas IV; Zhang M; Spilker MH
    J Biomater Sci Polym Ed; 2007; 18(8):943-66. PubMed ID: 17705992
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoscaffolds in promoting regeneration of the peripheral nervous system.
    Aijie C; Xuan L; Huimin L; Yanli Z; Yiyuan K; Yuqing L; Longquan S
    Nanomedicine (Lond); 2018 May; 13(9):1067-1085. PubMed ID: 29790811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Production and application of bio-derived scaffold in peripheral nerve].
    Niu X; Liu X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2006 Feb; 20(2):194-8. PubMed ID: 16529333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nano-Engineered Environment for Nerve Regeneration: Scaffolds, Functional Molecules and Stem Cells.
    He L; Tian L; Sun Y; Zhang Y; Xue W; So KF; Ramakrishna S; Wu W
    Curr Stem Cell Res Ther; 2016; 11(8):605-617. PubMed ID: 26423299
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sciatic nerve repair by microgrooved nerve conduits made of chitosan-gold nanocomposites.
    Lin YL; Jen JC; Hsu SH; Chiu IM
    Surg Neurol; 2008 Dec; 70 Suppl 1():S1:9-18. PubMed ID: 18440619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast and efficient screening system for new biomaterials in tissue engineering: a model for peripheral nerve regeneration.
    Bruns S; Stark Y; Wieland M; Stahl F; Kasper C; Scheper T
    J Biomed Mater Res A; 2007 Jun; 81(3):736-47. PubMed ID: 17226811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Collagen tissue engineering: development of novel biomaterials and applications.
    Cen L; Liu W; Cui L; Zhang W; Cao Y
    Pediatr Res; 2008 May; 63(5):492-6. PubMed ID: 18427293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.