These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 1683700)
1. Pharmacokinetic interaction between imipramine and antidepressant neuroleptics in rats. Daniel W Pol J Pharmacol Pharm; 1991; 43(3):197-206. PubMed ID: 1683700 [TBL] [Abstract][Full Text] [Related]
2. Pharmacokinetics of phenothiazine neuroleptics after chronic coadministration of carbamazepine. Daniel WA; Syrek M; Haduch A; Wójcikowski J Pol J Pharmacol; 1998; 50(6):431-42. PubMed ID: 10385926 [TBL] [Abstract][Full Text] [Related]
3. The effect of prolonged administration of imipramine on its hepatic metabolism in rats. Daniel W; Melzacka M Pol J Pharmacol Pharm; 1987; 39(2):135-41. PubMed ID: 3432159 [TBL] [Abstract][Full Text] [Related]
4. Effects of combined treatment with imipramine and metyrapone in the forced swimming test in rats. Behavioral and pharmacokinetic studies. Rogóz Z; Skuza G; Wójcikowski J; Daniel WA Pol J Pharmacol; 2003; 55(6):993-9. PubMed ID: 14730094 [TBL] [Abstract][Full Text] [Related]
5. Hepatic metabolism of imipramine after prolonged administration of the drug to rats. An in vivo study. Melzacka M; Danek L; Adamus A Pol J Pharmacol Pharm; 1987; 39(4):379-86. PubMed ID: 3449809 [TBL] [Abstract][Full Text] [Related]
6. The effect of neuroleptics on imipramine demethylation in rat liver microsomes and imipramine and desipramine level in the rat brain. Daniel W; Melzacka M Biochem Pharmacol; 1986 Oct; 35(19):3249-53. PubMed ID: 2876708 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of antidepressant-like activity by joint administration of imipramine and magnesium in the forced swim test: Behavioral and pharmacokinetic studies in mice. Poleszak E; Wlaź P; Szewczyk B; Kedzierska E; Wyska E; Librowski T; Szymura-Oleksiak J; Fidecka S; Pilc A; Nowak G Pharmacol Biochem Behav; 2005 Jul; 81(3):524-9. PubMed ID: 15936065 [TBL] [Abstract][Full Text] [Related]
8. Species differences in hepatic microsomal drug-metabolizing enzymes. Danek L; Nocoń H; Tarnawska A; Melzacka M Pol J Pharmacol Pharm; 1988; 40(4):351-6. PubMed ID: 3222176 [TBL] [Abstract][Full Text] [Related]
9. Distribution interactions between perazine and antidepressant drugs. In vivo studies. Wójcikowski J; Daniel WA Pol J Pharmacol; 2000; 52(6):449-57. PubMed ID: 11334238 [TBL] [Abstract][Full Text] [Related]
10. Imipramine-induced inactivation of a cytochrome P450 2D enzyme in rat liver microsomes: in relation to covalent binding of its reactive intermediate. Masubuchi Y; Igarashi S; Suzuki T; Horie T; Narimatsu S J Pharmacol Exp Ther; 1996 Nov; 279(2):724-31. PubMed ID: 8930177 [TBL] [Abstract][Full Text] [Related]
11. Chronic dosage of imipramine in animal experiment: concentrations of imipramine and desipramine in the rat brain after various modes of dosage. Melzacka M; Rurak A; Danek L; Daniel W; Vetulani J Pol J Pharmacol Pharm; 1985; 37(4):525-32. PubMed ID: 4080646 [TBL] [Abstract][Full Text] [Related]
12. The distribution of imipramine and desipramine in rat brain regions after single and chronic administration of imipramine. Szymura-Oleksiak J; Panas M; Chruściel W Pol J Pharmacol Pharm; 1984; 36(1):21-6. PubMed ID: 6462958 [TBL] [Abstract][Full Text] [Related]
13. Different effects of amitriptyline and imipramine on the pharmacokinetics and metabolism of perazine in rats. Daniel WA; Syrek M; Haduch A; Wójcikowski J J Pharm Pharmacol; 2000 Dec; 52(12):1473-81. PubMed ID: 11197075 [TBL] [Abstract][Full Text] [Related]
14. Effects of phenothiazine neuroleptics on the rate of caffeine demethylation and hydroxylation in the rat liver. Daniel WA; Syrek M; Ryłko Z; Kot M Pol J Pharmacol; 2001; 53(6):615-21. PubMed ID: 11985335 [TBL] [Abstract][Full Text] [Related]
15. Promazine pharmacokinetics during concurrent treatment with tricyclic antidepressants. Syrek M; Wójcikowski J; Daniel WA Pol J Pharmacol; 1997; 49(6):453-62. PubMed ID: 9566049 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of rat liver CYP2D in vitro and after 1-day and long-term exposure to neuroleptics in vivo-possible involvement of different mechanisms. Daniel WA; Haduch A; Wójcikowski J Eur Neuropsychopharmacol; 2005 Jan; 15(1):103-10. PubMed ID: 15572279 [TBL] [Abstract][Full Text] [Related]
17. Reappraisal of human CYP isoforms involved in imipramine N-demethylation and 2-hydroxylation: a study using microsomes obtained from putative extensive and poor metabolizers of S-mephenytoin and eleven recombinant human CYPs. Koyama E; Chiba K; Tani M; Ishizaki T J Pharmacol Exp Ther; 1997 Jun; 281(3):1199-210. PubMed ID: 9190854 [TBL] [Abstract][Full Text] [Related]
18. Pharmacokinetics of imipramine and its major metabolites in pregnant rats and their fetuses following a single dose. DeVane CL; Simpkins JW Drug Metab Dispos; 1985; 13(4):438-42. PubMed ID: 2863107 [TBL] [Abstract][Full Text] [Related]
19. A comprehensive investigation of plasma and brain regional pharmacokinetics of imipramine and its metabolites during and after chronic administration in the rat. Besret L; Debruyne D; Rioux P; Bonvalot T; Moulin M; Zarifian E; Baron JC J Pharm Sci; 1996 Mar; 85(3):291-5. PubMed ID: 8699331 [TBL] [Abstract][Full Text] [Related]
20. Organophosphorothionate pesticides inhibit the bioactivation of imipramine by human hepatic cytochrome P450s. Di Consiglio E; Meneguz A; Testai E Toxicol Appl Pharmacol; 2005 Jun; 205(3):237-46. PubMed ID: 15922009 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]