BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 16837042)

  • 1. Outgrowth endothelial cells isolated and expanded from human peripheral blood progenitor cells as a potential source of autologous cells for endothelialization of silk fibroin biomaterials.
    Fuchs S; Motta A; Migliaresi C; Kirkpatrick CJ
    Biomaterials; 2006 Nov; 27(31):5399-408. PubMed ID: 16837042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of human endothelial cells.
    Unger RE; Peters K; Wolf M; Motta A; Migliaresi C; Kirkpatrick CJ
    Biomaterials; 2004 Sep; 25(21):5137-46. PubMed ID: 15109837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic processes involved in the pre-vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells.
    Fuchs S; Jiang X; Schmidt H; Dohle E; Ghanaati S; Orth C; Hofmann A; Motta A; Migliaresi C; Kirkpatrick CJ
    Biomaterials; 2009 Mar; 30(7):1329-38. PubMed ID: 19091396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with cocultures of human microvascular endothelial and osteoblast cells and the host vasculature.
    Unger RE; Ghanaati S; Orth C; Sartoris A; Barbeck M; Halstenberg S; Motta A; Migliaresi C; Kirkpatrick CJ
    Biomaterials; 2010 Sep; 31(27):6959-67. PubMed ID: 20619788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionality of endothelial cells on silk fibroin nets: comparative study of micro- and nanometric fibre size.
    Bondar B; Fuchs S; Motta A; Migliaresi C; Kirkpatrick CJ
    Biomaterials; 2008 Feb; 29(5):561-72. PubMed ID: 17942151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds.
    Fuchs S; Ghanaati S; Orth C; Barbeck M; Kolbe M; Hofmann A; Eblenkamp M; Gomes M; Reis RL; Kirkpatrick CJ
    Biomaterials; 2009 Feb; 30(4):526-34. PubMed ID: 18977026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retention of a differentiated endothelial phenotype by outgrowth endothelial cells isolated from human peripheral blood and expanded in long-term cultures.
    Fuchs S; Hermanns MI; Kirkpatrick CJ
    Cell Tissue Res; 2006 Oct; 326(1):79-92. PubMed ID: 16736194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells.
    Kim HJ; Kim UJ; Vunjak-Novakovic G; Min BH; Kaplan DL
    Biomaterials; 2005 Jul; 26(21):4442-52. PubMed ID: 15701373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Recent progress on silk fibroin as tissue engineering biomaterials].
    Wang H; Li M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Feb; 22(2):192-5. PubMed ID: 18365617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Biocompatibility of silk fibroin nanofibers scaffold with olfactory ensheathing cells].
    Qian Y; Shen Y; Lu Z; Fan Z; Liu T; Zhang J; Zhang F
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Nov; 23(11):1365-70. PubMed ID: 19968182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelial and stem cell interactions on dielectrophoretically aligned fibrous silk fibroin-chitosan scaffolds.
    Gupta V; Davis G; Gordon A; Altman AM; Reece GP; Gascoyne PR; Mathur AB
    J Biomed Mater Res A; 2010 Aug; 94(2):515-23. PubMed ID: 20186770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro.
    Yang Y; Chen X; Ding F; Zhang P; Liu J; Gu X
    Biomaterials; 2007 Mar; 28(9):1643-52. PubMed ID: 17188747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes.
    Mandal BB; Kundu SC
    Acta Biomater; 2009 Sep; 5(7):2579-90. PubMed ID: 19345621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering.
    Garcia-Fuentes M; Meinel AJ; Hilbe M; Meinel L; Merkle HP
    Biomaterials; 2009 Oct; 30(28):5068-76. PubMed ID: 19564040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-culture of outgrowth endothelial cells with human mesenchymal stem cells in silk fibroin hydrogels promotes angiogenesis.
    Sun W; Motta A; Shi Y; Seekamp A; Schmidt H; Gorb SN; Migliaresi C; Fuchs S
    Biomed Mater; 2016 Jun; 11(3):035009. PubMed ID: 27271291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes.
    Wang Y; Blasioli DJ; Kim HJ; Kim HS; Kaplan DL
    Biomaterials; 2006 Sep; 27(25):4434-42. PubMed ID: 16677707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation on in vitro biocompatibility of silk fibroin-based biomaterials with primarily cultured hippocampal neurons.
    Tang X; Ding F; Yang Y; Hu N; Wu H; Gu X
    J Biomed Mater Res A; 2009 Oct; 91(1):166-74. PubMed ID: 18780373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials.
    Unger RE; Sartoris A; Peters K; Motta A; Migliaresi C; Kunkel M; Bulnheim U; Rychly J; Kirkpatrick CJ
    Biomaterials; 2007 Sep; 28(27):3965-76. PubMed ID: 17582491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering.
    Liu H; Li X; Zhou G; Fan H; Fan Y
    Biomaterials; 2011 May; 32(15):3784-93. PubMed ID: 21376391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vascularization and gene regulation of human endothelial cells growing on porous polyethersulfone (PES) hollow fiber membranes.
    Unger RE; Peters K; Huang Q; Funk A; Paul D; Kirkpatrick CJ
    Biomaterials; 2005 Jun; 26(17):3461-9. PubMed ID: 15621235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.