These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 16837042)
1. Outgrowth endothelial cells isolated and expanded from human peripheral blood progenitor cells as a potential source of autologous cells for endothelialization of silk fibroin biomaterials. Fuchs S; Motta A; Migliaresi C; Kirkpatrick CJ Biomaterials; 2006 Nov; 27(31):5399-408. PubMed ID: 16837042 [TBL] [Abstract][Full Text] [Related]
2. Endothelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of human endothelial cells. Unger RE; Peters K; Wolf M; Motta A; Migliaresi C; Kirkpatrick CJ Biomaterials; 2004 Sep; 25(21):5137-46. PubMed ID: 15109837 [TBL] [Abstract][Full Text] [Related]
3. Dynamic processes involved in the pre-vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells. Fuchs S; Jiang X; Schmidt H; Dohle E; Ghanaati S; Orth C; Hofmann A; Motta A; Migliaresi C; Kirkpatrick CJ Biomaterials; 2009 Mar; 30(7):1329-38. PubMed ID: 19091396 [TBL] [Abstract][Full Text] [Related]
4. The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with cocultures of human microvascular endothelial and osteoblast cells and the host vasculature. Unger RE; Ghanaati S; Orth C; Sartoris A; Barbeck M; Halstenberg S; Motta A; Migliaresi C; Kirkpatrick CJ Biomaterials; 2010 Sep; 31(27):6959-67. PubMed ID: 20619788 [TBL] [Abstract][Full Text] [Related]
5. Functionality of endothelial cells on silk fibroin nets: comparative study of micro- and nanometric fibre size. Bondar B; Fuchs S; Motta A; Migliaresi C; Kirkpatrick CJ Biomaterials; 2008 Feb; 29(5):561-72. PubMed ID: 17942151 [TBL] [Abstract][Full Text] [Related]
6. Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds. Fuchs S; Ghanaati S; Orth C; Barbeck M; Kolbe M; Hofmann A; Eblenkamp M; Gomes M; Reis RL; Kirkpatrick CJ Biomaterials; 2009 Feb; 30(4):526-34. PubMed ID: 18977026 [TBL] [Abstract][Full Text] [Related]
7. Retention of a differentiated endothelial phenotype by outgrowth endothelial cells isolated from human peripheral blood and expanded in long-term cultures. Fuchs S; Hermanns MI; Kirkpatrick CJ Cell Tissue Res; 2006 Oct; 326(1):79-92. PubMed ID: 16736194 [TBL] [Abstract][Full Text] [Related]
8. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Kim HJ; Kim UJ; Vunjak-Novakovic G; Min BH; Kaplan DL Biomaterials; 2005 Jul; 26(21):4442-52. PubMed ID: 15701373 [TBL] [Abstract][Full Text] [Related]
9. [Recent progress on silk fibroin as tissue engineering biomaterials]. Wang H; Li M Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Feb; 22(2):192-5. PubMed ID: 18365617 [TBL] [Abstract][Full Text] [Related]
10. [Biocompatibility of silk fibroin nanofibers scaffold with olfactory ensheathing cells]. Qian Y; Shen Y; Lu Z; Fan Z; Liu T; Zhang J; Zhang F Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Nov; 23(11):1365-70. PubMed ID: 19968182 [TBL] [Abstract][Full Text] [Related]
11. Endothelial and stem cell interactions on dielectrophoretically aligned fibrous silk fibroin-chitosan scaffolds. Gupta V; Davis G; Gordon A; Altman AM; Reece GP; Gascoyne PR; Mathur AB J Biomed Mater Res A; 2010 Aug; 94(2):515-23. PubMed ID: 20186770 [TBL] [Abstract][Full Text] [Related]
12. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Yang Y; Chen X; Ding F; Zhang P; Liu J; Gu X Biomaterials; 2007 Mar; 28(9):1643-52. PubMed ID: 17188747 [TBL] [Abstract][Full Text] [Related]
13. Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes. Mandal BB; Kundu SC Acta Biomater; 2009 Sep; 5(7):2579-90. PubMed ID: 19345621 [TBL] [Abstract][Full Text] [Related]
14. Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering. Garcia-Fuentes M; Meinel AJ; Hilbe M; Meinel L; Merkle HP Biomaterials; 2009 Oct; 30(28):5068-76. PubMed ID: 19564040 [TBL] [Abstract][Full Text] [Related]
15. Co-culture of outgrowth endothelial cells with human mesenchymal stem cells in silk fibroin hydrogels promotes angiogenesis. Sun W; Motta A; Shi Y; Seekamp A; Schmidt H; Gorb SN; Migliaresi C; Fuchs S Biomed Mater; 2016 Jun; 11(3):035009. PubMed ID: 27271291 [TBL] [Abstract][Full Text] [Related]
16. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Wang Y; Blasioli DJ; Kim HJ; Kim HS; Kaplan DL Biomaterials; 2006 Sep; 27(25):4434-42. PubMed ID: 16677707 [TBL] [Abstract][Full Text] [Related]
17. Evaluation on in vitro biocompatibility of silk fibroin-based biomaterials with primarily cultured hippocampal neurons. Tang X; Ding F; Yang Y; Hu N; Wu H; Gu X J Biomed Mater Res A; 2009 Oct; 91(1):166-74. PubMed ID: 18780373 [TBL] [Abstract][Full Text] [Related]
18. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Unger RE; Sartoris A; Peters K; Motta A; Migliaresi C; Kunkel M; Bulnheim U; Rychly J; Kirkpatrick CJ Biomaterials; 2007 Sep; 28(27):3965-76. PubMed ID: 17582491 [TBL] [Abstract][Full Text] [Related]
19. Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering. Liu H; Li X; Zhou G; Fan H; Fan Y Biomaterials; 2011 May; 32(15):3784-93. PubMed ID: 21376391 [TBL] [Abstract][Full Text] [Related]
20. Vascularization and gene regulation of human endothelial cells growing on porous polyethersulfone (PES) hollow fiber membranes. Unger RE; Peters K; Huang Q; Funk A; Paul D; Kirkpatrick CJ Biomaterials; 2005 Jun; 26(17):3461-9. PubMed ID: 15621235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]