These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
374 related articles for article (PubMed ID: 16837182)
1. AC electro-osmotic mixing induced by non-contact external electrodes. Wang SC; Chen HP; Lee CY; Yu CC; Chang HC Biosens Bioelectron; 2006 Oct; 22(4):563-7. PubMed ID: 16837182 [TBL] [Abstract][Full Text] [Related]
2. A novel microfluidic driver via AC electrokinetics. Kuo CT; Liu CH Lab Chip; 2008 May; 8(5):725-33. PubMed ID: 18432342 [TBL] [Abstract][Full Text] [Related]
3. Assessment of three AC electroosmotic flow protocols for mixing in microfluidic channel. Chen JK; Weng CN; Yang RJ Lab Chip; 2009 May; 9(9):1267-73. PubMed ID: 19370247 [TBL] [Abstract][Full Text] [Related]
4. Modelling, fabrication and characterization of a polymeric micromixer based on sequential segmentation. Nguyen NT; Huang X Biomed Microdevices; 2006 Jun; 8(2):133-9. PubMed ID: 16688572 [TBL] [Abstract][Full Text] [Related]
5. Simulation and experimentation of a microfluidic device based on electrowetting on dielectric. Jang LS; Lin GH; Lin YL; Hsu CY; Kan WH; Chen CH Biomed Microdevices; 2007 Dec; 9(6):777-86. PubMed ID: 17520369 [TBL] [Abstract][Full Text] [Related]
9. AC electroosmotic micromixer for chemical processing in a microchannel. Sasaki N; Kitamori T; Kim HB Lab Chip; 2006 Apr; 6(4):550-4. PubMed ID: 16572218 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects. Yan D; Yang C; Miao J; Lam Y; Huang X Electrophoresis; 2009 Sep; 30(18):3144-52. PubMed ID: 19764063 [TBL] [Abstract][Full Text] [Related]
11. Improving the mixing performance of side channel type micromixers using an optimal voltage control model. Wu CH; Yang RJ Biomed Microdevices; 2006 Jun; 8(2):119-31. PubMed ID: 16688571 [TBL] [Abstract][Full Text] [Related]
12. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects. Jellema LC; Mey T; Koster S; Verpoorte E Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and analysis of spatially uniform field electrokinetic flow devices: theory and experiment. Skulan AJ; Barrett LM; Singh AK; Cummings EB; Fiechtner GJ Anal Chem; 2005 Nov; 77(21):6790-7. PubMed ID: 16255575 [TBL] [Abstract][Full Text] [Related]
14. AC field induced-charge electroosmosis over leaky dielectric blocks embedded in a microchannel. Zhao C; Yang C Electrophoresis; 2011 Feb; 32(5):629-37. PubMed ID: 21290390 [TBL] [Abstract][Full Text] [Related]
15. Directional flow induced by synchronized longitudinal and zeta-potential controlling AC-electrical fields. van der Wouden EJ; Hermes DC; Gardeniers JG; van den Berg A Lab Chip; 2006 Oct; 6(10):1300-5. PubMed ID: 17102843 [TBL] [Abstract][Full Text] [Related]
16. Interactions of electrical fields with fluids: laboratory-on-a-chip applications. Wu J IET Nanobiotechnol; 2008 Mar; 2(1):14-27. PubMed ID: 18298196 [TBL] [Abstract][Full Text] [Related]
17. Electro-osmosis at inhomogeneous charged surfaces: hydrodynamic versus electric friction. Kim YW; Netz RR J Chem Phys; 2006 Mar; 124(11):114709. PubMed ID: 16555912 [TBL] [Abstract][Full Text] [Related]
18. Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes. Jang LS; Huang PH; Lan KC Biosens Bioelectron; 2009 Aug; 24(12):3637-44. PubMed ID: 19545991 [TBL] [Abstract][Full Text] [Related]
19. Electrophoresis in strong electric fields. Barany S Adv Colloid Interface Sci; 2009; 147-148():36-43. PubMed ID: 19041962 [TBL] [Abstract][Full Text] [Related]
20. A method for simultaneous estimation of inhomogeneous zeta potential and slip coefficient in microchannels. Park HM; Choi YJ Anal Chim Acta; 2008 Jun; 616(2):160-9. PubMed ID: 18482599 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]