These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 16837211)

  • 1. Improvements in G protein-coupled receptor purification yield light stable rhodopsin crystals.
    Salom D; Le Trong I; Pohl E; Ballesteros JA; Stenkamp RE; Palczewski K; Lodowski DT
    J Struct Biol; 2006 Dec; 156(3):497-504. PubMed ID: 16837211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray crystallographic studies for ligand-protein interaction changes in rhodopsin.
    Okada T
    Biochem Soc Trans; 2004 Nov; 32(Pt 5):738-41. PubMed ID: 15494002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmembrane signaling by GPCRs: insight from rhodopsin and opsin structures.
    Choe HW; Park JH; Kim YJ; Ernst OP
    Neuropharmacology; 2011 Jan; 60(1):52-7. PubMed ID: 20708633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the ligand-free G-protein-coupled receptor opsin.
    Park JH; Scheerer P; Hofmann KP; Choe HW; Ernst OP
    Nature; 2008 Jul; 454(7201):183-7. PubMed ID: 18563085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the rhodopsin dimer: a working model for G-protein-coupled receptors.
    Fotiadis D; Jastrzebska B; Philippsen A; Müller DJ; Palczewski K; Engel A
    Curr Opin Struct Biol; 2006 Apr; 16(2):252-9. PubMed ID: 16567090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-Ray diffraction analysis of three-dimensional crystals of bovine rhodopsin obtained from mixed micelles.
    Okada T; Le Trong I; Fox BA; Behnke CA; Stenkamp RE; Palczewski K
    J Struct Biol; 2000 May; 130(1):73-80. PubMed ID: 10806093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for ligand binding and specificity in adrenergic receptors: implications for GPCR-targeted drug discovery.
    Huber T; Menon S; Sakmar TP
    Biochemistry; 2008 Oct; 47(42):11013-23. PubMed ID: 18821775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PREDICT modeling and in-silico screening for G-protein coupled receptors.
    Shacham S; Marantz Y; Bar-Haim S; Kalid O; Warshaviak D; Avisar N; Inbal B; Heifetz A; Fichman M; Topf M; Naor Z; Noiman S; Becker OM
    Proteins; 2004 Oct; 57(1):51-86. PubMed ID: 15326594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A concept for G protein activation by G protein-coupled receptor dimers: the transducin/rhodopsin interface.
    Filipek S; Krzysko KA; Fotiadis D; Liang Y; Saperstein DA; Engel A; Palczewski K
    Photochem Photobiol Sci; 2004 Jun; 3(6):628-38. PubMed ID: 15170495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio computational modeling of loops in G-protein-coupled receptors: lessons from the crystal structure of rhodopsin.
    Mehler EL; Hassan SA; Kortagere S; Weinstein H
    Proteins; 2006 Aug; 64(3):673-90. PubMed ID: 16729264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond rhodopsin: G protein-coupled receptor structure and modeling incorporating the beta2-adrenergic and adenosine A(2A) crystal structures.
    Tebben AJ; Schnur DM
    Methods Mol Biol; 2011; 672():359-86. PubMed ID: 20838977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward the active conformations of rhodopsin and the beta2-adrenergic receptor.
    Gouldson PR; Kidley NJ; Bywater RP; Psaroudakis G; Brooks HD; Diaz C; Shire D; Reynolds CA
    Proteins; 2004 Jul; 56(1):67-84. PubMed ID: 15162487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8.
    Mielke T; Villa C; Edwards PC; Schertler GF; Heyn MP
    J Mol Biol; 2002 Feb; 316(3):693-709. PubMed ID: 11866527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based identification of binding sites, native ligands and potential inhibitors for G-protein coupled receptors.
    Cavasotto CN; Orry AJ; Abagyan RA
    Proteins; 2003 May; 51(3):423-33. PubMed ID: 12696053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallization of G protein-coupled receptors.
    Salom D; Padayatti PS; Palczewski K
    Methods Cell Biol; 2013; 117():451-68. PubMed ID: 24143992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of rhodopsin and the metarhodopsin I photointermediate.
    Schertler GF
    Curr Opin Struct Biol; 2005 Aug; 15(4):408-15. PubMed ID: 16043340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring rhodopsin-G-protein interactions by surface plasmon resonance.
    Northup J
    Methods Mol Biol; 2004; 261():93-112. PubMed ID: 15064451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of the extracellular loops in G protein-coupled receptors for ligand recognition and receptor activation.
    Peeters MC; van Westen GJ; Li Q; IJzerman AP
    Trends Pharmacol Sci; 2011 Jan; 32(1):35-42. PubMed ID: 21075459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional structure of an invertebrate rhodopsin and basis for ordered alignment in the photoreceptor membrane.
    Davies A; Gowen BE; Krebs AM; Schertler GF; Saibil HR
    J Mol Biol; 2001 Nov; 314(3):455-63. PubMed ID: 11846559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.