BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 16837463)

  • 1. Mouse homologue of skin-specific retroviral-like aspartic protease involved in wrinkle formation.
    Matsui T; Kinoshita-Ida Y; Hayashi-Kisumi F; Hata M; Matsubara K; Chiba M; Katahira-Tayama S; Morita K; Miyachi Y; Tsukita S
    J Biol Chem; 2006 Sep; 281(37):27512-25. PubMed ID: 16837463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of a novel retroviral-like aspartic protease specifically expressed in human epidermis.
    Bernard D; Méhul B; Thomas-Collignon A; Delattre C; Donovan M; Schmidt R
    J Invest Dermatol; 2005 Aug; 125(2):278-87. PubMed ID: 16098038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical Characterization of Human Retroviral-Like Aspartic Protease 1 (ASPRV1).
    Golda M; Mótyán JA; Nagy K; Matúz K; Nagy T; Tőzsér J
    Biomolecules; 2020 Jul; 10(7):. PubMed ID: 32640672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A de novo variant in the ASPRV1 gene in a dog with ichthyosis.
    Bauer A; Waluk DP; Galichet A; Timm K; Jagannathan V; Sayar BS; Wiener DJ; Dietschi E; Müller EJ; Roosje P; Welle MM; Leeb T
    PLoS Genet; 2017 Mar; 13(3):e1006651. PubMed ID: 28249031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SASPase regulates stratum corneum hydration through profilaggrin-to-filaggrin processing.
    Matsui T; Miyamoto K; Kubo A; Kawasaki H; Ebihara T; Hata K; Tanahashi S; Ichinose S; Imoto I; Inazawa J; Kudoh J; Amagai M
    EMBO Mol Med; 2011 Jun; 3(6):320-33. PubMed ID: 21542132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Adaptive Evolution of Skin in Terrestrial Vertebrates and Possible Involvement of Endogenous Retroviruses].
    Matsui T
    Uirusu; 2016; 66(1):31-38. PubMed ID: 28484176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retroviral proteases.
    Dunn BM; Goodenow MM; Gustchina A; Wlodawer A
    Genome Biol; 2002; 3(4):REVIEWS3006. PubMed ID: 11983066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structural model for the retroviral proteases.
    Pearl LH; Taylor WR
    Nature; 1987 Sep 24-30; 329(6137):351-4. PubMed ID: 3306411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionarily conserved functional mechanics across pepsin-like and retroviral aspartic proteases.
    Cascella M; Micheletti C; Rothlisberger U; Carloni P
    J Am Chem Soc; 2005 Mar; 127(11):3734-42. PubMed ID: 15771507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel family of predicted retroviral-like aspartyl proteases with a possible key role in eukaryotic cell cycle control.
    Krylov DM; Koonin EV
    Curr Biol; 2001 Aug; 11(15):R584-7. PubMed ID: 11516960
    [No Abstract]   [Full Text] [Related]  

  • 11. Reversible oxidative modification as a mechanism for regulating retroviral protease dimerization and activation.
    Davis DA; Brown CA; Newcomb FM; Boja ES; Fales HM; Kaufman J; Stahl SJ; Wingfield P; Yarchoan R
    J Virol; 2003 Mar; 77(5):3319-25. PubMed ID: 12584357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cleavage of vimentin by different retroviral proteases.
    Snásel J; Shoeman R; Horejsí M; Hrusková-Heidingsfeldová O; Sedlácek J; Ruml T; Pichová I
    Arch Biochem Biophys; 2000 May; 377(2):241-5. PubMed ID: 10845700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of the protease of human endogenous retrovirus, K10: can it complement HIV-1 protease?
    Towler EM; Gulnik SV; Bhat TN; Xie D; Gustschina E; Sumpter TR; Robertson N; Jones C; Sauter M; Mueller-Lantzsch N; Debouck C; Erickson JW
    Biochemistry; 1998 Dec; 37(49):17137-44. PubMed ID: 9860826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteolytic processing of Ty3 proteins is required for transposition.
    Kirchner J; Sandmeyer S
    J Virol; 1993 Jan; 67(1):19-28. PubMed ID: 7677953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ddi1, a eukaryotic protein with the retroviral protease fold.
    Sirkis R; Gerst JE; Fass D
    J Mol Biol; 2006 Dec; 364(3):376-87. PubMed ID: 17010377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of a retroviral protease proves relationship to aspartic protease family.
    Miller M; Jaskólski M; Rao JK; Leis J; Wlodawer A
    Nature; 1989 Feb; 337(6207):576-9. PubMed ID: 2536902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subsite preferences of retroviral proteinases.
    Dunn BM; Gustchina A; Wlodawer A; Kay J
    Methods Enzymol; 1994; 241():254-78. PubMed ID: 7854181
    [No Abstract]   [Full Text] [Related]  

  • 18. Filaggrin and filaggrin 2 processing are linked together through skin aspartic acid protease activation.
    Donovan M; Salamito M; Thomas-Collignon A; Simonetti L; Desbouis S; Rain JC; Formstecher E; Bernard D
    PLoS One; 2020; 15(5):e0232679. PubMed ID: 32437351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparisons of the sequences, 3-D structures and mechanisms of pepsin-like and retroviral aspartic proteinases.
    Blundell TL; Cooper JB; Sali A; Zhu ZY
    Adv Exp Med Biol; 1991; 306():443-53. PubMed ID: 1812741
    [No Abstract]   [Full Text] [Related]  

  • 20. Analysis of substrate cleavage by recombinant protease of human T cell leukaemia virus type 1 reveals preferences and specificity of binding.
    Daenke S; Schramm HJ; Bangham CR
    J Gen Virol; 1994 Sep; 75 ( Pt 9)():2233-9. PubMed ID: 8077922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.