These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 16837575)

  • 1. A form of motor cortical plasticity that correlates with recovery of function after brain injury.
    Ramanathan D; Conner JM; Tuszynski MH
    Proc Natl Acad Sci U S A; 2006 Jul; 103(30):11370-5. PubMed ID: 16837575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Traumatic Brain Injury Occludes Training-Dependent Cortical Reorganization in the Contralesional Hemisphere.
    Pruitt DT; Danaphongse TT; Schmid AN; Morrison RA; Kilgard MP; Rennaker RL; Hays SA
    J Neurotrauma; 2017 Sep; 34(17):2495-2503. PubMed ID: 28462608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordinated Plasticity of Synapses and Astrocytes Underlies Practice-Driven Functional Vicariation in Peri-Infarct Motor Cortex.
    Kim SY; Hsu JE; Husbands LC; Kleim JA; Jones TA
    J Neurosci; 2018 Jan; 38(1):93-107. PubMed ID: 29133435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor cortex stimulation enhances motor recovery and reduces peri-infarct dysfunction following ischemic insult.
    Kleim JA; Bruneau R; VandenBerg P; MacDonald E; Mulrooney R; Pocock D
    Neurol Res; 2003 Dec; 25(8):789-93. PubMed ID: 14669520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical Stimulation Concurrent With Skilled Motor Training Improves Forelimb Function and Enhances Motor Cortical Reorganization Following Controlled Cortical Impact.
    Jefferson SC; Clayton ER; Donlan NA; Kozlowski DA; Jones TA; Adkins DL
    Neurorehabil Neural Repair; 2016 Feb; 30(2):155-8. PubMed ID: 26248599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-Evans rats have a larger cortical topographic representation of movement than Fischer-344 rats: a microstimulation study of motor cortex in naïve and skilled reaching-trained rats.
    VandenBerg PM; Hogg TM; Kleim JA; Whishaw IQ
    Brain Res Bull; 2002 Nov; 59(3):197-203. PubMed ID: 12431749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial Motor Training Results in Functional Reorganization of Remaining Motor Cortex after Controlled Cortical Impact in Rats.
    Combs HL; Jones TA; Kozlowski DA; Adkins DL
    J Neurotrauma; 2016 Apr; 33(8):741-7. PubMed ID: 26421759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and plasticity of complex movement representations.
    Singleton AC; Brown AR; Teskey GC
    J Neurophysiol; 2021 Feb; 125(2):628-637. PubMed ID: 33471611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forelimb training drives transient map reorganization in ipsilateral motor cortex.
    Pruitt DT; Schmid AN; Danaphongse TT; Flanagan KE; Morrison RA; Kilgard MP; Rennaker RL; Hays SA
    Behav Brain Res; 2016 Oct; 313():10-16. PubMed ID: 27392641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel phosphodiesterase type 4 inhibitor, HT-0712, enhances rehabilitation-dependent motor recovery and cortical reorganization after focal cortical ischemia.
    MacDonald E; Van der Lee H; Pocock D; Cole C; Thomas N; VandenBerg PM; Bourtchouladze R; Kleim JA
    Neurorehabil Neural Repair; 2007; 21(6):486-96. PubMed ID: 17823313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical stimulation improves skilled forelimb use following a focal ischemic infarct in the rat.
    Teskey GC; Flynn C; Goertzen CD; Monfils MH; Young NA
    Neurol Res; 2003 Dec; 25(8):794-800. PubMed ID: 14669521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intact intracortical microstimulation (ICMS) representations of rostral and caudal forelimb areas in rats with quinolinic acid lesions of the medial or lateral caudate-putamen in an animal model of Huntington's disease.
    Karl JM; Sacrey LA; McDonald RJ; Whishaw IQ
    Brain Res Bull; 2008 Sep; 77(1):42-8. PubMed ID: 18639744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasticity of the contralateral motor cortex following focal traumatic brain injury in the rat.
    Axelson HW; Winkler T; Flygt J; Djupsjö A; Hånell A; Marklund N
    Restor Neurol Neurosci; 2013; 31(1):73-85. PubMed ID: 23047494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning.
    Kleim JA; Hogg TM; VandenBerg PM; Cooper NR; Bruneau R; Remple M
    J Neurosci; 2004 Jan; 24(3):628-33. PubMed ID: 14736848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prenatal alcohol exposure reduces the size of the forelimb representation in motor cortex in rat: an intracortical microstimulation (ICMS) mapping study.
    Xie N; Yang Q; Chappell TD; Li CX; Waters RS
    Alcohol; 2010 Mar; 44(2):185-94. PubMed ID: 20083368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experience-dependent structural plasticity in cortex heterotopic to focal sensorimotor cortical damage.
    Chu CJ; Jones TA
    Exp Neurol; 2000 Dec; 166(2):403-14. PubMed ID: 11085905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reorganization of motor cortex after controlled cortical impact in rats and implications for functional recovery.
    Nishibe M; Barbay S; Guggenmos D; Nudo RJ
    J Neurotrauma; 2010 Dec; 27(12):2221-32. PubMed ID: 20873958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seizures Alter Cortical Representations for Complex Movements.
    Brown AR; Coughlin GM; Teskey GC
    Neuroscience; 2020 Nov; 449():134-146. PubMed ID: 32916196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Back seat driving: hindlimb corticospinal neurons assume forelimb control following ischaemic stroke.
    Starkey ML; Bleul C; Zörner B; Lindau NT; Mueggler T; Rudin M; Schwab ME
    Brain; 2012 Nov; 135(Pt 11):3265-81. PubMed ID: 23169918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A limited range of vagus nerve stimulation intensities produce motor cortex reorganization when delivered during training.
    Morrison RA; Danaphongse TT; Pruitt DT; Adcock KS; Mathew JK; Abe ST; Abdulla DM; Rennaker RL; Kilgard MP; Hays SA
    Behav Brain Res; 2020 Aug; 391():112705. PubMed ID: 32473844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.