These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 16838354)
81. Strength influencing variables on CAD/CAM zirconia frameworks. Wang H; Aboushelib MN; Feilzer AJ Dent Mater; 2008 May; 24(5):633-8. PubMed ID: 17765301 [TBL] [Abstract][Full Text] [Related]
82. Strength and reliability of four-unit all-ceramic posterior bridges. Lüthy H; Filser F; Loeffel O; Schumacher M; Gauckler LJ; Hammerle CH Dent Mater; 2005 Oct; 21(10):930-7. PubMed ID: 15923031 [TBL] [Abstract][Full Text] [Related]
83. Chipping behaviour of all-ceramic crowns with zirconia framework and CAD/CAM manufactured veneer. Schmitter M; Mueller D; Rues S J Dent; 2012 Feb; 40(2):154-62. PubMed ID: 22197634 [TBL] [Abstract][Full Text] [Related]
84. Retrievable metal ceramic implant-supported fixed prostheses with milled titanium frameworks and all-ceramic crowns: retrospective clinical study with up to 10 years of follow-up. Maló P; de Araújo Nobre M; Borges J; Almeida R J Prosthodont; 2012 Jun; 21(4):256-64. PubMed ID: 22339902 [TBL] [Abstract][Full Text] [Related]
85. Marginal fit of alumina-and zirconia-based fixed partial dentures produced by a CAD/CAM system. Tinschert J; Natt G; Mautsch W; Spiekermann H; Anusavice KJ Oper Dent; 2001; 26(4):367-74. PubMed ID: 11504436 [TBL] [Abstract][Full Text] [Related]
86. Mechanical stability of zirconia meso-abutments bonded to titanium bases restored with different monolithic all-ceramic crowns. Pitta J; Hicklin SP; Fehmer V; Boldt J; Gierthmuehlen PC; Sailer I Int J Oral Maxillofac Implants; 2019; 34(5):1091–1097. PubMed ID: 30934031 [TBL] [Abstract][Full Text] [Related]
87. Translucent zirconia in the ceramic scenario for monolithic restorations: A flexural strength and translucency comparison test. Carrabba M; Keeling AJ; Aziz A; Vichi A; Fabian Fonzar R; Wood D; Ferrari M J Dent; 2017 May; 60():70-76. PubMed ID: 28274651 [TBL] [Abstract][Full Text] [Related]
88. Dynamic fatigue and strength characterization of three ceramic materials. Teixeira EC; Piascik JR; Stoner BR; Thompson JY J Mater Sci Mater Med; 2007 Jun; 18(6):1219-24. PubMed ID: 17277977 [TBL] [Abstract][Full Text] [Related]
89. Effect of sandblasting on the long-term performance of dental ceramics. Zhang Y; Lawn BR; Rekow ED; Thompson VP J Biomed Mater Res B Appl Biomater; 2004 Nov; 71(2):381-6. PubMed ID: 15386395 [TBL] [Abstract][Full Text] [Related]
90. Fracture toughness, strength and slow crack growth in a ceria stabilized zirconia-alumina nanocomposite for medical applications. Benzaid R; Chevalier J; Saâdaoui M; Fantozzi G; Nawa M; Diaz LA; Torrecillas R Biomaterials; 2008 Sep; 29(27):3636-3641. PubMed ID: 18571716 [TBL] [Abstract][Full Text] [Related]
91. Role of substrate material in failure of crown-like layer structures. Kim JW; Bhowmick S; Chai H; Lawn BR J Biomed Mater Res B Appl Biomater; 2007 May; 81(2):305-11. PubMed ID: 17022051 [TBL] [Abstract][Full Text] [Related]
92. An Advanced Fiber-Reinforced Composite Solution for Gingival Inflammation and Bone Loss Related to Restorative Crowns. Petersen RC; Liu PR; Reddy MS EC Dent Sci; 2020 Feb; 19(2):. PubMed ID: 33196061 [TBL] [Abstract][Full Text] [Related]
93. Graphene oxide increases PMMA's resistance to fatigue and strength degradation. Cahyanto A; Martins MVS; Bianchi O; Sudhakaran DP; Sililkas N; Echeverrigaray SG; Rosa V Dent Mater; 2023 Sep; 39(9):763-769. PubMed ID: 37400298 [TBL] [Abstract][Full Text] [Related]
94. Nanocrystalline Alumina-Zirconia-Based Eutectic Ceramics Fabricated with High-Energy Beams: Principle, Solidification Techniques, Microstructure and Mechanical Properties. Wang ZG; Zhang YZ; Ouyang JH; Song XW; Xie M; Wang YM; Wang YJ Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109821 [TBL] [Abstract][Full Text] [Related]
95. UV-Curing Assisted Direct Ink Writing of Dense, Crack-Free, and High-Performance Zirconia-Based Composites With Aligned Alumina Platelets. Li M; Huang S; Willems E; Soete J; Inokoshi M; Van Meerbeek B; Vleugels J; Zhang F Adv Mater; 2024 Feb; 36(5):e2306764. PubMed ID: 37986661 [TBL] [Abstract][Full Text] [Related]
96. Effect of the Characteristic Size and Content of Graphene on the Crack Propagation Path of Alumina/Graphene Composite Ceramics. Chen B; Xiao G; Yi M; Zhang J; Zhou T; Chen Z; Zhang Y; Xu C Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33525747 [TBL] [Abstract][Full Text] [Related]
97. Self-healing by design: universal kinetic model of strength recovery in self-healing ceramics. Osada T; Hara T; Mitome M; Ozaki S; Abe T; Kamoda K; Ohmura T Sci Technol Adv Mater; 2020 Aug; 21(1):593-608. PubMed ID: 32939183 [TBL] [Abstract][Full Text] [Related]
98. Multi-tip indenter tool scratch behavior of glass-ceramics. Qiu Z; Wang Y J Mech Behav Biomed Mater; 2021 Sep; 121():104617. PubMed ID: 34091152 [TBL] [Abstract][Full Text] [Related]
99. Finite element analysis of the fracture statistics of self-healing ceramics. Ozaki S; Nakamura M; Osada T Sci Technol Adv Mater; 2020 Sep; 21(1):609-625. PubMed ID: 33061834 [TBL] [Abstract][Full Text] [Related]