These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 16838533)

  • 1. Reducing reflected contributions to ear-canal distortion product otoacoustic emissions in humans.
    Johnson TA; Neely ST; Kopun JG; Gorga MP
    J Acoust Soc Am; 2006 Jun; 119(6):3896-907. PubMed ID: 16838533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of common stimulus parameters on distortion product otoacoustic emission fine structure.
    Johnson TA; Baranowski LG
    Ear Hear; 2012; 33(2):239-49. PubMed ID: 21918451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cochlear Mechanisms and Otoacoustic Emission Test Performance.
    Go NA; Stamper GC; Johnson TA
    Ear Hear; 2019; 40(2):401-417. PubMed ID: 29952805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fine structure of distortion product otoacoustic emissions: its dependence on age and hearing threshold and clinical implications.
    Wagner W; Plinkert PK; Vonthein R; Plontke SK
    Eur Arch Otorhinolaryngol; 2008 Oct; 265(10):1165-72. PubMed ID: 18301908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for the distortion product frequency place as a source of distortion product otoacoustic emission (DPOAE) fine structure in humans. I. Fine structure and higher-order DPOAE as a function of the frequency ratio f2/f1.
    Mauermann M; Uppenkamp S; van Hengel PW; Kollmeier B
    J Acoust Soc Am; 1999 Dec; 106(6):3473-83. PubMed ID: 10615687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gender, music, and distortion product otoacoustic emission components.
    Torre P; Grace J; Hansen C; Millman P; Martin H
    Ear Hear; 2013; 34(6):e74-81. PubMed ID: 23698624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of a suppressor tone on distortion product otoacoustic emissions fine structure: why a universal suppressor level is not a practical solution to obtaining single-generator DP-grams.
    Dhar S; Shaffer LA
    Ear Hear; 2004 Dec; 25(6):573-85. PubMed ID: 15604918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repeatability of high-frequency distortion-product otoacoustic emissions in normal-hearing adults.
    Dreisbach LE; Long KM; Lees SE
    Ear Hear; 2006 Oct; 27(5):466-79. PubMed ID: 16957498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Test-retest repeatability of distortion product otoacoustic emissions.
    Wagner W; Heppelmann G; Vonthein R; Zenner HP
    Ear Hear; 2008 Jun; 29(3):378-91. PubMed ID: 18382378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fine alterations of distortion-product otoacoustic emissions after moderate acoustic overexposure in guinea pigs.
    Kossowski M; Mom T; Guitton M; Poncet JL; Bonfils P; Avan P
    Audiology; 2001; 40(3):113-22. PubMed ID: 11465293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of negative middle ear pressure on distortion product otoacoustic emissions and application of a compensation procedure in humans.
    Sun XM; Shaver MD
    Ear Hear; 2009 Apr; 30(2):191-202. PubMed ID: 19194291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Level dependence of distortion product otoacoustic emission phase is attributed to component mixing.
    Abdala C; Dhar S; Kalluri R
    J Acoust Soc Am; 2011 May; 129(5):3123-33. PubMed ID: 21568415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative Middle Ear Pressure and Composite and Component Distortion Product Otoacoustic Emissions.
    Thompson S; Henin S; Long GR
    Ear Hear; 2015; 36(6):695-704. PubMed ID: 26049553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General characteristics and suppression tuning properties of the distortion-product otoacoustic emission 2f1-f2 in the barn owl.
    Taschenberger G; Manley GA
    Hear Res; 1998 Sep; 123(1-2):183-200. PubMed ID: 9745966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid measurement of auditory steady-state responses and distortion product otoacoustic emissions using an amplitude-modulated primary tone.
    Oswald JA; Rosner T; Janssen T
    J Acoust Soc Am; 2006 Jun; 119(6):3886-95. PubMed ID: 16838532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sources of distortion product otoacoustic emissions revealed by suppression experiments and inverse fast Fourier transforms in normal ears.
    Konrad-Martin D; Neely ST; Keefe DH; Dorn PA; Gorga MP
    J Acoust Soc Am; 2001 Jun; 109(6):2862-79. PubMed ID: 11425129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple internal reflections in the cochlea and their effect on DPOAE fine structure.
    Dhar S; Talmadge CL; Long GR; Tubis A
    J Acoust Soc Am; 2002 Dec; 112(6):2882-97. PubMed ID: 12509010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the Compressive Nonlinearity of the Cochlea During Early Aging: Estimates From Distortion OAE Input/Output Functions.
    Ortmann AJ; Abdala C
    Ear Hear; 2016; 37(5):603-14. PubMed ID: 27232070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of stimulus-frequency ratio on distortion product otoacoustic emission components.
    Dhar S; Long GR; Talmadge CL; Tubis A
    J Acoust Soc Am; 2005 Jun; 117(6):3766-76. PubMed ID: 16018480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Olivocochlear reflex effect on human distortion product otoacoustic emissions is largest at frequencies with distinct fine structure dips.
    Wagner W; Heppelmann G; Müller J; Janssen T; Zenner HP
    Hear Res; 2007 Jan; 223(1-2):83-92. PubMed ID: 17137736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.