BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1276 related articles for article (PubMed ID: 16839014)

  • 1. Ion solvation in water from molecular dynamics simulation with the ABEEM/MM force field.
    Yang ZZ; Li X
    J Phys Chem A; 2005 Apr; 109(16):3517-20. PubMed ID: 16839014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of N-methylacetamide in water clusters: based on atom-bond electronegativity equalization method fused into molecular mechanics.
    Yang ZZ; Qian P
    J Chem Phys; 2006 Aug; 125(6):64311. PubMed ID: 16942290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular-dynamics simulations of alkaline-earth metal cations in water by atom-bond electronegativity equalization method fused into molecular mechanics.
    Yang ZZ; Li X
    J Chem Phys; 2005 Sep; 123(9):94507. PubMed ID: 16164353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydration of Li+ -ion in atom-bond electronegativity equalization method-7P water: a molecular dynamics simulation study.
    Li X; Yang ZZ
    J Chem Phys; 2005 Feb; 122(8):84514. PubMed ID: 15836070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atom-bond electronegativity equalization method fused into molecular mechanics. I. A seven-site fluctuating charge and flexible body water potential function for water clusters.
    Yang ZZ; Wu Y; Zhao DX
    J Chem Phys; 2004 Feb; 120(6):2541-57. PubMed ID: 15268398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational design of ion force fields based on thermodynamic solvation properties.
    Horinek D; Mamatkulov SI; Netz RR
    J Chem Phys; 2009 Mar; 130(12):124507. PubMed ID: 19334851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of lithium cation in water clusters: based on atom-bond electronegativity equalization method fused into molecular mechanics.
    Li X; Yang ZZ
    J Phys Chem A; 2005 May; 109(18):4102-11. PubMed ID: 16833733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydration free energies of monovalent ions in transferable intermolecular potential four point fluctuating charge water: an assessment of simulation methodology and force field performance and transferability.
    Warren GL; Patel S
    J Chem Phys; 2007 Aug; 127(6):064509. PubMed ID: 17705614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density functional study of ion hydration for the alkali metal ions (Li+, Na+, K+) and the halide ions (F-, Br-, Cl-).
    Krekeler C; Hess B; Delle Site L
    J Chem Phys; 2006 Aug; 125(5):054305. PubMed ID: 16942211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarization and charge-transfer effects in aqueous solution via ab initio QM/MM simulations.
    Mo Y; Gao J
    J Phys Chem B; 2006 Feb; 110(7):2976-80. PubMed ID: 16494296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular simulation analysis and X-ray absorption measurement of Ca2+, K+ and Cl- ions in solution.
    Dang LX; Schenter GK; Glezakou VA; Fulton JL
    J Phys Chem B; 2006 Nov; 110(47):23644-54. PubMed ID: 17125322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion solvation thermodynamics from simulation with a polarizable force field.
    Grossfield A; Ren P; Ponder JW
    J Am Chem Soc; 2003 Dec; 125(50):15671-82. PubMed ID: 14664617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functional theory based molecular-dynamics study of aqueous iodide solvation.
    Heuft JM; Meijer EJ
    J Chem Phys; 2005 Sep; 123(9):94506. PubMed ID: 16164352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of large nitrate-water clusters at ambient temperatures: simulations with effective fragment potentials and force fields with implications for atmospheric chemistry.
    Miller Y; Thomas JL; Kemp DD; Finlayson-Pitts BJ; Gordon MS; Tobias DJ; Gerber RB
    J Phys Chem A; 2009 Nov; 113(46):12805-14. PubMed ID: 19817362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.
    Mobley DL; Dumont E; Chodera JD; Dill KA
    J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microsolvation of the sodium and iodide ions and their ion pair in acetonitrile clusters: a theoretical study.
    Nguyen TN; Hughes SR; Peslherbe GH
    J Phys Chem B; 2008 Jan; 112(2):621-35. PubMed ID: 18183958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic force field optimization based on single-ion and ion-pair solvation properties.
    Fyta M; Kalcher I; Dzubiella J; Vrbka L; Netz RR
    J Chem Phys; 2010 Jan; 132(2):024911. PubMed ID: 20095713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast dynamics of hydrogen bond exchange in aqueous ionic solutions.
    Park S; Odelius M; Gaffney KJ
    J Phys Chem B; 2009 Jun; 113(22):7825-35. PubMed ID: 19435307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordination number of zinc ions in the phosphotriesterase active site by molecular dynamics and quantum mechanics.
    Koca J; Zhan CG; Rittenhouse RC; Ornstein RL
    J Comput Chem; 2003 Feb; 24(3):368-78. PubMed ID: 12548728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computation of methodology-independent single-ion solvation properties from molecular simulations. III. Correction terms for the solvation free energies, enthalpies, entropies, heat capacities, volumes, compressibilities, and expansivities of solvated ions.
    Reif MM; Hünenberger PH
    J Chem Phys; 2011 Apr; 134(14):144103. PubMed ID: 21495738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 64.