BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 16839020)

  • 1. Mechanisms and kinetics of noncatalytic ether reaction in supercritical water. 1. Proton-transferred fragmentation of diethyl ether to acetaldehyde in competition with hydrolysis.
    Nagai Y; Matubayasi N; Nakahara M
    J Phys Chem A; 2005 Apr; 109(16):3550-7. PubMed ID: 16839020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms and kinetics of noncatalytic ether reaction in supercritical water. 2. Proton-transferred fragmentation of dimethyl ether to formaldehyde in competition with hydrolysis.
    Nagai Y; Matubayasi N; Nakahara M
    J Phys Chem A; 2005 Apr; 109(16):3558-64. PubMed ID: 16839021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic study on disproportionations of C1 aldehydes in supercritical water: methanol from formaldehyde and formic acid.
    Morooka S; Matubayasi N; Nakahara M
    J Phys Chem A; 2007 Apr; 111(14):2697-705. PubMed ID: 17388377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrothermal C-C bond formation and disproportionation of acetaldehyde with formic acid.
    Morooka S; Matubayasi N; Nakahara M
    J Phys Chem A; 2008 Jul; 112(30):6950-9. PubMed ID: 18605710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrothermal carbon-carbon bond formation and disproportionations of C1 aldehydes: formaldehyde and formic acid.
    Morooka S; Wakai C; Matubayasi N; Nakahara M
    J Phys Chem A; 2005 Jul; 109(29):6610-9. PubMed ID: 16834010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic and equilibrium study on formic acid decomposition in relation to the water-gas-shift reaction.
    Yasaka Y; Yoshida K; Wakai C; Matubayasi N; Nakahara M
    J Phys Chem A; 2006 Sep; 110(38):11082-90. PubMed ID: 16986841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-diffusion of supercritical water in extremely low-density region.
    Yoshida K; Matubayasi N; Nakahara M
    J Chem Phys; 2006 Aug; 125(7):074307. PubMed ID: 16942339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depolymerization and de-N-acetylation of chitin oligomers in hydrochloric acid.
    Einbu A; VĂ¥rum KM
    Biomacromolecules; 2007 Jan; 8(1):309-14. PubMed ID: 17206822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water activity effects on geranyl acetate synthesis catalyzed by novozym in supercritical ethane and in supercritical carbon dioxide.
    Peres C; Gomes da Silva MD; Barreiros S
    J Agric Food Chem; 2003 Mar; 51(7):1884-8. PubMed ID: 12643646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme-like acceleration for the hydrolysis of a DNA model promoted by a dinuclear Zn(II) catalyst in dilute aqueous ethanol.
    Liu CT; Neverov AA; Brown RS
    J Am Chem Soc; 2008 Oct; 130(42):13870-2. PubMed ID: 18821763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recombination of the hydrated electron at high temperature and pressure in hydrogenated alkaline water.
    Marin TW; Takahashi K; Jonah CD; Chemerisov SD; Bartels DM
    J Phys Chem A; 2007 Nov; 111(45):11540-51. PubMed ID: 17929904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermentable hexose production from corn stalks and wheat straw with combined supercritical and subcritical hydrothermal technology.
    Zhao Y; Lu WJ; Wang HT; Yang JL
    Bioresour Technol; 2009 Dec; 100(23):5884-9. PubMed ID: 19616938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heck coupling reaction of iodobenzene and styrene using supercritical water in the absence of a catalyst.
    Zhang R; Sato O; Zhao F; Sato M; Ikushima Y
    Chemistry; 2004 Mar; 10(6):1501-6. PubMed ID: 15034894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deactivation pathways of neutral Ni(II) polymerization catalysts.
    Berkefeld A; Mecking S
    J Am Chem Soc; 2009 Feb; 131(4):1565-74. PubMed ID: 19138124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature dependence of the rate coefficients for the reactions of Br atoms with dimethyl ether and diethyl ether.
    Wheeler M; Mills R; Roscoe JM
    J Phys Chem A; 2008 Feb; 112(5):858-65. PubMed ID: 18186619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of temperature-promoted and solvent-assisted cross-linking in sulfonated poly(ether ether ketone) (SPEEK) proton-conducting membranes.
    Di Vona ML; Sgreccia E; Licoccia S; Alberti G; Tortet L; Knauth P
    J Phys Chem B; 2009 May; 113(21):7505-12. PubMed ID: 19419139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trimolecular reactions of uranium hexafluoride with water.
    Lind MC; Garrison SL; Becnel JM
    J Phys Chem A; 2010 Apr; 114(13):4641-6. PubMed ID: 20210345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of water density on the absorption maximum of hydrated electrons in sub- and supercritical water up to 400 degrees C.
    Jay-Gerin JP; Lin M; Katsumura Y; He H; Muroya Y; Meesungnoen J
    J Chem Phys; 2008 Sep; 129(11):114511. PubMed ID: 19044973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrolysis technology of biomass waste to produce amino acids in sub-critical water.
    Cheng H; Zhu X; Zhu C; Qian J; Zhu N; Zhao L; Chen J
    Bioresour Technol; 2008 Jun; 99(9):3337-41. PubMed ID: 17900895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrothermal reactions of formaldehyde and formic acid: free-energy analysis of equilibrium.
    Matubayasi N; Nakahara M
    J Chem Phys; 2005 Feb; 122(7):074509. PubMed ID: 15743256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.