These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 16839021)

  • 1. Mechanisms and kinetics of noncatalytic ether reaction in supercritical water. 2. Proton-transferred fragmentation of dimethyl ether to formaldehyde in competition with hydrolysis.
    Nagai Y; Matubayasi N; Nakahara M
    J Phys Chem A; 2005 Apr; 109(16):3558-64. PubMed ID: 16839021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms and kinetics of noncatalytic ether reaction in supercritical water. 1. Proton-transferred fragmentation of diethyl ether to acetaldehyde in competition with hydrolysis.
    Nagai Y; Matubayasi N; Nakahara M
    J Phys Chem A; 2005 Apr; 109(16):3550-7. PubMed ID: 16839020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic study on disproportionations of C1 aldehydes in supercritical water: methanol from formaldehyde and formic acid.
    Morooka S; Matubayasi N; Nakahara M
    J Phys Chem A; 2007 Apr; 111(14):2697-705. PubMed ID: 17388377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrothermal carbon-carbon bond formation and disproportionations of C1 aldehydes: formaldehyde and formic acid.
    Morooka S; Wakai C; Matubayasi N; Nakahara M
    J Phys Chem A; 2005 Jul; 109(29):6610-9. PubMed ID: 16834010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrothermal C-C bond formation and disproportionation of acetaldehyde with formic acid.
    Morooka S; Matubayasi N; Nakahara M
    J Phys Chem A; 2008 Jul; 112(30):6950-9. PubMed ID: 18605710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrothermal reactions of formaldehyde and formic acid: free-energy analysis of equilibrium.
    Matubayasi N; Nakahara M
    J Chem Phys; 2005 Feb; 122(7):074509. PubMed ID: 15743256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics study of Acid-catalyzed hydrolysis of dimethyl ether in aqueous solution.
    Liang X; Montoya A; Haynes BS
    J Phys Chem B; 2011 Jun; 115(25):8199-206. PubMed ID: 21651303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural requirements and reaction pathways in dimethyl ether combustion catalyzed by supported Pt clusters.
    Ishikawa A; Neurock M; Iglesia E
    J Am Chem Soc; 2007 Oct; 129(43):13201-12. PubMed ID: 17915866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced uranium complexes: synthetic and DFT study of the role of pi ligation in the stabilization of uranium species in a formal low-valent state.
    Korobkov I; Gorelsky S; Gambarotta S
    J Am Chem Soc; 2009 Aug; 131(30):10406-20. PubMed ID: 19588963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic and equilibrium study on formic acid decomposition in relation to the water-gas-shift reaction.
    Yasaka Y; Yoshida K; Wakai C; Matubayasi N; Nakahara M
    J Phys Chem A; 2006 Sep; 110(38):11082-90. PubMed ID: 16986841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman spectroscopic study on the solvation of p-aminobenzonitrile in supercritical water and methanol.
    Osawa K; Hamamoto T; Fujisawa T; Terazima M; Sato H; Kimura Y
    J Phys Chem A; 2009 Apr; 113(13):3143-54. PubMed ID: 19320516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide.
    Brausam A; Maigut J; Meier R; Szilágyi PA; Buschmann HJ; Massa W; Homonnay Z; van Eldik R
    Inorg Chem; 2009 Aug; 48(16):7864-84. PubMed ID: 19618946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heck coupling reaction of iodobenzene and styrene using supercritical water in the absence of a catalyst.
    Zhang R; Sato O; Zhao F; Sato M; Ikushima Y
    Chemistry; 2004 Mar; 10(6):1501-6. PubMed ID: 15034894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-assisted transamination of glycine and formaldehyde.
    Liao RZ; Ding WJ; Yu JG; Fang WH; Liu RZ
    J Phys Chem A; 2007 Apr; 111(16):3184-90. PubMed ID: 17394297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent effect on pathways and mechanisms for D-fructose conversion to 5-hydroxymethyl-2-furaldehyde: in situ 13C NMR study.
    Kimura H; Nakahara M; Matubayasi N
    J Phys Chem A; 2013 Mar; 117(10):2102-13. PubMed ID: 23458365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of substitution, hybridization, and solvent on the properties of C-HO single-electron hydrogen bond in CH3-H2O complex.
    An X; Liu H; Li Q; Gong B; Cheng J
    J Phys Chem A; 2008 Jun; 112(23):5258-63. PubMed ID: 18479113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decomposition of neutral, singly and doubly protonated benzoquinone in the gas phase.
    Roithová J; Schröder D; Schwarz H
    Chemistry; 2005 Jan; 11(2):628-38. PubMed ID: 15578678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ ATR-IR spectroscopic and reaction kinetics studies of water-gas shift and methanol reforming on Pt/Al2O3 catalysts in vapor and liquid phases.
    He R; Davda RR; Dumesic JA
    J Phys Chem B; 2005 Feb; 109(7):2810-20. PubMed ID: 16851292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing an appropriate computational model for DNA nucleoside hydrolysis: a case study of 2'-deoxyuridine.
    Przybylski JL; Wetmore SD
    J Phys Chem B; 2009 May; 113(18):6533-42. PubMed ID: 19358541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction paths of the water-assisted neutral hydrolysis of ethyl acetate.
    Yamabe S; Tsuchida N; Hayashida Y
    J Phys Chem A; 2005 Aug; 109(32):7216-24. PubMed ID: 16834086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.