These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 16839090)
1. Collective solvent coordinates for the infrared spectrum of HOD in D2O based on an ab initio electrostatic map. Hayashi T; la Cour Jansen T; Zhuang W; Mukamel S J Phys Chem A; 2005 Jan; 109(1):64-82. PubMed ID: 16839090 [TBL] [Abstract][Full Text] [Related]
2. Assessing the electric-field approximation to IR and Raman spectra of dilute HOD in D2O. Ljungberg MP; Lyubartsev AP; Nilsson A; Pettersson LG J Chem Phys; 2009 Jul; 131(3):034501. PubMed ID: 19624203 [TBL] [Abstract][Full Text] [Related]
3. Infrared and Raman line shapes of dilute HOD in liquid H2O and D2O from 10 to 90 degrees C. Corcelli SA; Skinner JL J Phys Chem A; 2005 Jul; 109(28):6154-65. PubMed ID: 16833955 [TBL] [Abstract][Full Text] [Related]
4. Stochastic Liouville equations for hydrogen-bonding fluctuations and their signatures in two-dimensional vibrational spectroscopy of water. Jansen Tl; Hayashi T; Zhuang W; Mukamel S J Chem Phys; 2005 Sep; 123(11):114504. PubMed ID: 16392570 [TBL] [Abstract][Full Text] [Related]
5. Combined electronic structure/molecular dynamics approach for ultrafast infrared spectroscopy of dilute HOD in liquid H2O and D2O. Corcelli SA; Lawrence CP; Skinner JL J Chem Phys; 2004 May; 120(17):8107-17. PubMed ID: 15267730 [TBL] [Abstract][Full Text] [Related]
6. Electrostatic DFT map for the complete vibrational amide band of NMA. Hayashi T; Zhuang W; Mukamel S J Phys Chem A; 2005 Nov; 109(43):9747-59. PubMed ID: 16833288 [TBL] [Abstract][Full Text] [Related]
7. Infrared spectroscopy and hydrogen-bond dynamics of liquid water from centroid molecular dynamics with an ab initio-based force field. Paesani F; Xantheas SS; Voth GA J Phys Chem B; 2009 Oct; 113(39):13118-30. PubMed ID: 19722542 [TBL] [Abstract][Full Text] [Related]
8. Nonequilibrium molecular dynamics simulations of vibrational energy relaxation of HOD in D2O. Kandratsenka A; Schroeder J; Schwarzer D; Vikhrenko VS J Chem Phys; 2009 May; 130(17):174507. PubMed ID: 19425790 [TBL] [Abstract][Full Text] [Related]
9. CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model. Patel S; Mackerell AD; Brooks CL J Comput Chem; 2004 Sep; 25(12):1504-14. PubMed ID: 15224394 [TBL] [Abstract][Full Text] [Related]
10. Vibrational spectroscopic determination of local solvent electric field, solute-solvent electrostatic interaction energy, and their fluctuation amplitudes. Lee H; Lee G; Jeon J; Cho M J Phys Chem A; 2012 Jan; 116(1):347-57. PubMed ID: 22087732 [TBL] [Abstract][Full Text] [Related]
11. Amide I vibrational dynamics of N-methylacetamide in polar solvents: the role of electrostatic interactions. DeCamp MF; DeFlores L; McCracken JM; Tokmakoff A; Kwac K; Cho M J Phys Chem B; 2005 Jun; 109(21):11016-26. PubMed ID: 16852342 [TBL] [Abstract][Full Text] [Related]
12. Modeling Vibrational Spectra of Ester Carbonyl Stretch in Water and DMSO Based on Molecular Dynamics Simulation. Fang B; Wang T; Chen X; Jin T; Zhang R; Zhuang W J Phys Chem B; 2015 Sep; 119(38):12390-6. PubMed ID: 26335032 [TBL] [Abstract][Full Text] [Related]
13. Energy relaxation versus spectral diffusion of the OH-stretching vibration of HOD in liquid-to-supercritical deuterated water. Schwarzer D; Lindner J; Vöhringer P J Chem Phys; 2005 Oct; 123(16):161105. PubMed ID: 16268674 [TBL] [Abstract][Full Text] [Related]
14. Electric field fluctuations drive vibrational dephasing in water. Eaves JD; Tokmakoff A; Geissler PL J Phys Chem A; 2005 Oct; 109(42):9424-36. PubMed ID: 16866391 [TBL] [Abstract][Full Text] [Related]
15. Spectroscopically determined force field for water dimer: physically enhanced treatment of hydrogen bonding in molecular mechanics energy functions. Mannfors B; Palmo K; Krimm S J Phys Chem A; 2008 Dec; 112(49):12667-78. PubMed ID: 19012387 [TBL] [Abstract][Full Text] [Related]
16. Comparative study of electrostatic models for the amide-I and -II modes: linear and two-dimensional infrared spectra. Maekawa H; Ge NH J Phys Chem B; 2010 Jan; 114(3):1434-46. PubMed ID: 20050636 [TBL] [Abstract][Full Text] [Related]
17. A transferable electrostatic map for solvation effects on amide I vibrations and its application to linear and two-dimensional spectroscopy. la Cour Jansen T; Knoester J J Chem Phys; 2006 Jan; 124(4):044502. PubMed ID: 16460180 [TBL] [Abstract][Full Text] [Related]
18. Full dimensional (15 dimensional) quantum-dynamical simulation of the protonated water-dimer IV: isotope effects in the infrared spectra of D(D2O)2(+), H(D2O)2(+), and D(H2O)2(+) isotopologues. Vendrell O; Gatti F; Meyer HD J Chem Phys; 2009 Jul; 131(3):034308. PubMed ID: 19624198 [TBL] [Abstract][Full Text] [Related]
19. Solvent effects on IR and VCD spectra of helical peptides: DFT-based static spectral simulations with explicit water. Kubelka J; Huang R; Keiderling TA J Phys Chem B; 2005 Apr; 109(16):8231-43. PubMed ID: 16851962 [TBL] [Abstract][Full Text] [Related]
20. Inertial solvent dynamics and the analysis of spectral line shapes: Temperature-dependent absorption spectrum of beta-carotene in nonpolar solvent. Burt JA; Zhao X; McHale JL J Chem Phys; 2004 Mar; 120(9):4344-54. PubMed ID: 15268604 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]