BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 16839090)

  • 1. Collective solvent coordinates for the infrared spectrum of HOD in D2O based on an ab initio electrostatic map.
    Hayashi T; la Cour Jansen T; Zhuang W; Mukamel S
    J Phys Chem A; 2005 Jan; 109(1):64-82. PubMed ID: 16839090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the electric-field approximation to IR and Raman spectra of dilute HOD in D2O.
    Ljungberg MP; Lyubartsev AP; Nilsson A; Pettersson LG
    J Chem Phys; 2009 Jul; 131(3):034501. PubMed ID: 19624203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared and Raman line shapes of dilute HOD in liquid H2O and D2O from 10 to 90 degrees C.
    Corcelli SA; Skinner JL
    J Phys Chem A; 2005 Jul; 109(28):6154-65. PubMed ID: 16833955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic Liouville equations for hydrogen-bonding fluctuations and their signatures in two-dimensional vibrational spectroscopy of water.
    Jansen Tl; Hayashi T; Zhuang W; Mukamel S
    J Chem Phys; 2005 Sep; 123(11):114504. PubMed ID: 16392570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined electronic structure/molecular dynamics approach for ultrafast infrared spectroscopy of dilute HOD in liquid H2O and D2O.
    Corcelli SA; Lawrence CP; Skinner JL
    J Chem Phys; 2004 May; 120(17):8107-17. PubMed ID: 15267730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic DFT map for the complete vibrational amide band of NMA.
    Hayashi T; Zhuang W; Mukamel S
    J Phys Chem A; 2005 Nov; 109(43):9747-59. PubMed ID: 16833288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infrared spectroscopy and hydrogen-bond dynamics of liquid water from centroid molecular dynamics with an ab initio-based force field.
    Paesani F; Xantheas SS; Voth GA
    J Phys Chem B; 2009 Oct; 113(39):13118-30. PubMed ID: 19722542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonequilibrium molecular dynamics simulations of vibrational energy relaxation of HOD in D2O.
    Kandratsenka A; Schroeder J; Schwarzer D; Vikhrenko VS
    J Chem Phys; 2009 May; 130(17):174507. PubMed ID: 19425790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model.
    Patel S; Mackerell AD; Brooks CL
    J Comput Chem; 2004 Sep; 25(12):1504-14. PubMed ID: 15224394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrational spectroscopic determination of local solvent electric field, solute-solvent electrostatic interaction energy, and their fluctuation amplitudes.
    Lee H; Lee G; Jeon J; Cho M
    J Phys Chem A; 2012 Jan; 116(1):347-57. PubMed ID: 22087732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amide I vibrational dynamics of N-methylacetamide in polar solvents: the role of electrostatic interactions.
    DeCamp MF; DeFlores L; McCracken JM; Tokmakoff A; Kwac K; Cho M
    J Phys Chem B; 2005 Jun; 109(21):11016-26. PubMed ID: 16852342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling Vibrational Spectra of Ester Carbonyl Stretch in Water and DMSO Based on Molecular Dynamics Simulation.
    Fang B; Wang T; Chen X; Jin T; Zhang R; Zhuang W
    J Phys Chem B; 2015 Sep; 119(38):12390-6. PubMed ID: 26335032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy relaxation versus spectral diffusion of the OH-stretching vibration of HOD in liquid-to-supercritical deuterated water.
    Schwarzer D; Lindner J; Vöhringer P
    J Chem Phys; 2005 Oct; 123(16):161105. PubMed ID: 16268674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric field fluctuations drive vibrational dephasing in water.
    Eaves JD; Tokmakoff A; Geissler PL
    J Phys Chem A; 2005 Oct; 109(42):9424-36. PubMed ID: 16866391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopically determined force field for water dimer: physically enhanced treatment of hydrogen bonding in molecular mechanics energy functions.
    Mannfors B; Palmo K; Krimm S
    J Phys Chem A; 2008 Dec; 112(49):12667-78. PubMed ID: 19012387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of electrostatic models for the amide-I and -II modes: linear and two-dimensional infrared spectra.
    Maekawa H; Ge NH
    J Phys Chem B; 2010 Jan; 114(3):1434-46. PubMed ID: 20050636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A transferable electrostatic map for solvation effects on amide I vibrations and its application to linear and two-dimensional spectroscopy.
    la Cour Jansen T; Knoester J
    J Chem Phys; 2006 Jan; 124(4):044502. PubMed ID: 16460180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full dimensional (15 dimensional) quantum-dynamical simulation of the protonated water-dimer IV: isotope effects in the infrared spectra of D(D2O)2(+), H(D2O)2(+), and D(H2O)2(+) isotopologues.
    Vendrell O; Gatti F; Meyer HD
    J Chem Phys; 2009 Jul; 131(3):034308. PubMed ID: 19624198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent effects on IR and VCD spectra of helical peptides: DFT-based static spectral simulations with explicit water.
    Kubelka J; Huang R; Keiderling TA
    J Phys Chem B; 2005 Apr; 109(16):8231-43. PubMed ID: 16851962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inertial solvent dynamics and the analysis of spectral line shapes: Temperature-dependent absorption spectrum of beta-carotene in nonpolar solvent.
    Burt JA; Zhao X; McHale JL
    J Chem Phys; 2004 Mar; 120(9):4344-54. PubMed ID: 15268604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.