These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 16839182)
1. In vivo robustness analysis of cell division cycle genes in Saccharomyces cerevisiae. Moriya H; Shimizu-Yoshida Y; Kitano H PLoS Genet; 2006 Jul; 2(7):e111. PubMed ID: 16839182 [TBL] [Abstract][Full Text] [Related]
2. Robustness analysis of cellular systems using the genetic tug-of-war method. Moriya H; Makanae K; Watanabe K; Chino A; Shimizu-Yoshida Y Mol Biosyst; 2012 Oct; 8(10):2513-22. PubMed ID: 22722869 [TBL] [Abstract][Full Text] [Related]
3. New weakly expressed cell cycle-regulated genes in yeast. de Lichtenberg U; Wernersson R; Jensen TS; Nielsen HB; Fausbøll A; Schmidt P; Hansen FB; Knudsen S; Brunak S Yeast; 2005 Nov; 22(15):1191-201. PubMed ID: 16278933 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of the lower protein limit in the budding yeast Saccharomyces cerevisiae using TIPI-gTOW. Sasabe M; Shintani S; Kintaka R; Kaizu K; Makanae K; Moriya H BMC Syst Biol; 2014 Jan; 8():2. PubMed ID: 24393197 [TBL] [Abstract][Full Text] [Related]
5. Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures. Dunn B; Levine RP; Sherlock G BMC Genomics; 2005 Apr; 6():53. PubMed ID: 15833139 [TBL] [Abstract][Full Text] [Related]
6. Identification of dosage-sensitive genes in Saccharomyces cerevisiae using the genetic tug-of-war method. Makanae K; Kintaka R; Makino T; Kitano H; Moriya H Genome Res; 2013 Feb; 23(2):300-11. PubMed ID: 23275495 [TBL] [Abstract][Full Text] [Related]
7. Comparison of computational methods for the identification of cell cycle-regulated genes. de Lichtenberg U; Jensen LJ; Fausbøll A; Jensen TS; Bork P; Brunak S Bioinformatics; 2005 Apr; 21(7):1164-71. PubMed ID: 15513999 [TBL] [Abstract][Full Text] [Related]
8. Transcriptional regulatory networks in Saccharomyces cerevisiae. Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584 [TBL] [Abstract][Full Text] [Related]
9. The cell cycle DB: a systems biology approach to cell cycle analysis. Alfieri R; Merelli I; Mosca E; Milanesi L Nucleic Acids Res; 2008 Jan; 36(Database issue):D641-5. PubMed ID: 18160409 [TBL] [Abstract][Full Text] [Related]
10. Study of coordinative gene expression at the biological process level. Yu T; Sun W; Yuan S; Li KC Bioinformatics; 2005 Sep; 21(18):3651-7. PubMed ID: 16076891 [TBL] [Abstract][Full Text] [Related]
11. Evidence for abundant transcription of non-coding regions in the Saccharomyces cerevisiae genome. Havilio M; Levanon EY; Lerman G; Kupiec M; Eisenberg E BMC Genomics; 2005 Jun; 6():93. PubMed ID: 15960846 [TBL] [Abstract][Full Text] [Related]
12. Does mapping reveal correlation between gene expression and protein-protein interaction? Mrowka R; Liebermeister W; Holste D Nat Genet; 2003 Jan; 33(1):15-6; author reply 16-7. PubMed ID: 12509776 [No Abstract] [Full Text] [Related]
13. Systematic analysis of genome-wide fitness data in yeast reveals novel gene function and drug action. Hillenmeyer ME; Ericson E; Davis RW; Nislow C; Koller D; Giaever G Genome Biol; 2010; 11(3):R30. PubMed ID: 20226027 [TBL] [Abstract][Full Text] [Related]
14. MEC3, MEC1, and DDC2 are essential components of a telomere checkpoint pathway required for cell cycle arrest during senescence in Saccharomyces cerevisiae. Enomoto S; Glowczewski L; Berman J Mol Biol Cell; 2002 Aug; 13(8):2626-38. PubMed ID: 12181334 [TBL] [Abstract][Full Text] [Related]
15. Parallel real-time PCR on a chip for genetic tug-of-war (gTOW) method. Naito T; Yatsuhashi A; Kaji N; Ando T; Sato K; Moriya H; Kitano H; Yasui T; Tokeshi M; Baba Y Anal Sci; 2013; 29(3):367-71. PubMed ID: 23474728 [TBL] [Abstract][Full Text] [Related]
16. Superstability of the yeast cell-cycle dynamics: ensuring causality in the presence of biochemical stochasticity. Braunewell S; Bornholdt S J Theor Biol; 2007 Apr; 245(4):638-43. PubMed ID: 17204290 [TBL] [Abstract][Full Text] [Related]
17. Additional copies of the NOG2 and IST2 genes suppress the deficiency of cohesin Irr1p/Scc3p in Saccharomyces cerevisiae. Białkowska A; Kurlandzka A Acta Biochim Pol; 2002; 49(2):421-5. PubMed ID: 12362983 [TBL] [Abstract][Full Text] [Related]
18. Predicting essential genes in fungal genomes. Seringhaus M; Paccanaro A; Borneman A; Snyder M; Gerstein M Genome Res; 2006 Sep; 16(9):1126-35. PubMed ID: 16899653 [TBL] [Abstract][Full Text] [Related]
19. Genetic Interaction Motif Finding by expectation maximization--a novel statistical model for inferring gene modules from synthetic lethality. Qi Y; Ye P; Bader JS BMC Bioinformatics; 2005 Dec; 6():288. PubMed ID: 16332255 [TBL] [Abstract][Full Text] [Related]
20. Lessons in how to hold a fork. Zegerman P; Diffley JF Nat Struct Biol; 2003 Oct; 10(10):778-9. PubMed ID: 14513023 [No Abstract] [Full Text] [Related] [Next] [New Search]