These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 16839194)

  • 1. Wiggle-predicting functionally flexible regions from primary sequence.
    Gu J; Gribskov M; Bourne PE
    PLoS Comput Biol; 2006 Jul; 2(7):e90. PubMed ID: 16839194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic discovery of cross-family sequence features associated with protein function.
    Brameier M; Haan J; Krings A; MacCallum RM
    BMC Bioinformatics; 2006 Jan; 7():16. PubMed ID: 16409628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GANN: genetic algorithm neural networks for the detection of conserved combinations of features in DNA.
    Beiko RG; Charlebois RL
    BMC Bioinformatics; 2005 Feb; 6():36. PubMed ID: 15725347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TMB-Hunt: an amino acid composition based method to screen proteomes for beta-barrel transmembrane proteins.
    Garrow AG; Agnew A; Westhead DR
    BMC Bioinformatics; 2005 Mar; 6():56. PubMed ID: 15769290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feature selection and the class imbalance problem in predicting protein function from sequence.
    Al-Shahib A; Breitling R; Gilbert D
    Appl Bioinformatics; 2005; 4(3):195-203. PubMed ID: 16231961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simplified computational methods for the analysis of protein flexibility.
    Kuznetsov IB
    Curr Protein Pept Sci; 2009 Dec; 10(6):607-13. PubMed ID: 19538139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of novel DNA repair proteins via primary sequence, secondary structure, and homology.
    Brown JB; Akutsu T
    BMC Bioinformatics; 2009 Jan; 10():25. PubMed ID: 19154573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prodepth: predict residue depth by support vector regression approach from protein sequences only.
    Song J; Tan H; Mahmood K; Law RH; Buckle AM; Webb GI; Akutsu T; Whisstock JC
    PLoS One; 2009 Sep; 4(9):e7072. PubMed ID: 19759917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure- and sequence-based function prediction for non-homologous proteins.
    Sael L; Chitale M; Kihara D
    J Struct Funct Genomics; 2012 Jun; 13(2):111-23. PubMed ID: 22270458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting protein disorder by analyzing amino acid sequence.
    Yang JY; Yang MQ
    BMC Genomics; 2008 Sep; 9 Suppl 2(Suppl 2):S8. PubMed ID: 18831799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of HIV-1 Tat variants.
    Pantano S; Carloni P
    Proteins; 2005 Feb; 58(3):638-43. PubMed ID: 15609368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying sequence regions undergoing conformational change via predicted continuum secondary structure.
    Bodén M; Bailey TL
    Bioinformatics; 2006 Aug; 22(15):1809-14. PubMed ID: 16720586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CAB-Align: A Flexible Protein Structure Alignment Method Based on the Residue-Residue Contact Area.
    Terashi G; Takeda-Shitaka M
    PLoS One; 2015; 10(10):e0141440. PubMed ID: 26502070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized mixed Markov models for motif identification.
    Huang W; Umbach DM; Ohler U; Li L
    BMC Bioinformatics; 2006 Jun; 7():279. PubMed ID: 16749929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for the prediction of GPCRs coupling specificity to G-proteins using refined profile Hidden Markov Models.
    Sgourakis NG; Bagos PG; Papasaikas PK; Hamodrakas SJ
    BMC Bioinformatics; 2005 Apr; 6():104. PubMed ID: 15847681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Docking and scoring protein complexes: CAPRI 3rd Edition.
    Lensink MF; Méndez R; Wodak SJ
    Proteins; 2007 Dec; 69(4):704-18. PubMed ID: 17918726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A generalized affine gap model significantly improves protein sequence alignment accuracy.
    Zachariah MA; Crooks GE; Holbrook SR; Brenner SE
    Proteins; 2005 Feb; 58(2):329-38. PubMed ID: 15562515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein classification based on text document classification techniques.
    Cheng BY; Carbonell JG; Klein-Seetharaman J
    Proteins; 2005 Mar; 58(4):955-70. PubMed ID: 15645499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary sequence modeling for discovery of peptide hormones.
    Sonmez K; Zaveri NT; Kerman IA; Burke S; Neal CR; Xie X; Watson SJ; Toll L
    PLoS Comput Biol; 2009 Jan; 5(1):e1000258. PubMed ID: 19132080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the tolerated sequences for proteins and protein interfaces using RosettaBackrub flexible backbone design.
    Smith CA; Kortemme T
    PLoS One; 2011; 6(7):e20451. PubMed ID: 21789164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.