BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 16839657)

  • 21. Efficacy of levo carnitine and alpha lipoic acid in ameliorating the decline in mitochondrial enzymes during aging.
    Savitha S; Sivarajan K; Haripriya D; Kokilavani V; Panneerselvam C
    Clin Nutr; 2005 Oct; 24(5):794-800. PubMed ID: 15919137
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Oxidative enzyme activity of the tricarboxylic acid cycle in rat skeletal muscles in hypokinesia].
    Ganin IuA
    Kosm Biol Aviakosm Med; 1982; 16(6):37-41. PubMed ID: 7176503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microsporidian mitochondrial proteins: expression in Antonospora locustae spores and identification of genes coding for two further proteins.
    Williams BA; Keeling PJ
    J Eukaryot Microbiol; 2005; 52(3):271-6. PubMed ID: 15927004
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Localisation of gluconeogenesis and tricarboxylic acid (TCA)-cycle enzymes and first functional analysis of the TCA cycle in Toxoplasma gondii.
    Fleige T; Pfaff N; Gross U; Bohne W
    Int J Parasitol; 2008 Aug; 38(10):1121-32. PubMed ID: 18336823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Model of a quinary structure between Krebs TCA cycle enzymes: a model for the metabolon.
    Vélot C; Mixon MB; Teige M; Srere PA
    Biochemistry; 1997 Nov; 36(47):14271-6. PubMed ID: 9400365
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemopreventive efficacy of selenium against N-nitrosodiethylamine-induced hepatoma in albino rats.
    Thirunavukkarasu C; Singh JP; Selvendiran K; Sakthisekaran D
    Cell Biochem Funct; 2001 Dec; 19(4):265-71. PubMed ID: 11746207
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Approaches to defining dual-targeted proteins in Arabidopsis.
    Carrie C; Kühn K; Murcha MW; Duncan O; Small ID; O'Toole N; Whelan J
    Plant J; 2009 Mar; 57(6):1128-39. PubMed ID: 19036033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nuclear localization of enhanced green fluorescent protein homomultimers.
    Seibel NM; Eljouni J; Nalaskowski MM; Hampe W
    Anal Biochem; 2007 Sep; 368(1):95-9. PubMed ID: 17586454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification and characterization of the mitochondrial targeting sequence and mechanism in human citrate synthase.
    Cheng TL; Liao CC; Tsai WH; Lin CC; Yeh CW; Teng CF; Chang WT
    J Cell Biochem; 2009 Aug; 107(5):1002-15. PubMed ID: 19479947
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of Plasmodium falciparum family of SNAREs.
    Ayong L; Pagnotti G; Tobon AB; Chakrabarti D
    Mol Biochem Parasitol; 2007 Apr; 152(2):113-22. PubMed ID: 17240462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biochemical and structural characterization of Plasmodium falciparum glutamate dehydrogenase 2.
    Zocher K; Fritz-Wolf K; Kehr S; Fischer M; Rahlfs S; Becker K
    Mol Biochem Parasitol; 2012 May; 183(1):52-62. PubMed ID: 22342964
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulation of tricarboxylic acid cycle dehydrogenases during hepatocarcinogenesis induced by hexachlorocyclohexane in mice.
    Bhatt DK; Bano M
    Exp Toxicol Pathol; 2009 Jul; 61(4):325-32. PubMed ID: 18951770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Creatine administration prevents Na+,K+-ATPase inhibition induced by intracerebroventricular administration of isovaleric acid in cerebral cortex of young rats.
    Ribeiro CA; Leipnitz G; Amaral AU; de Bortoli G; Seminotti B; Wajner M
    Brain Res; 2009 Mar; 1262():81-8. PubMed ID: 19210957
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmodium falciparum possesses two GRASP proteins that are differentially targeted to the Golgi complex via a higher- and lower-eukaryote-like mechanism.
    Struck NS; Herrmann S; Langer C; Krueger A; Foth BJ; Engelberg K; Cabrera AL; Haase S; Treeck M; Marti M; Cowman AF; Spielmann T; Gilberger TW
    J Cell Sci; 2008 Jul; 121(Pt 13):2123-9. PubMed ID: 18522993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SELDI-TOF-MS analysis of chloroquine resistant and sensitive Plasmodium falciparum strains.
    Koncarevic S; Bogumil R; Becker K
    Proteomics; 2007 Mar; 7(5):711-21. PubMed ID: 17295353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Plasmodium falciparum RhopH2 promoter and first 24 amino acids are sufficient to target proteins to the rhoptries.
    Ghoneim A; Kaneko O; Tsuboi T; Torii M
    Parasitol Int; 2007 Mar; 56(1):31-43. PubMed ID: 17175193
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of peptides with high red blood cell and hepatocyte binding activity in the Plasmodium falciparum multi-stage invasion proteins: PfSPATR and MCP-1.
    Curtidor H; García J; Vanegas M; Puentes F; Forero M; Patarroyo ME
    Biochimie; 2008; 90(11-12):1750-9. PubMed ID: 18832006
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MAAP: malarial adhesins and adhesin-like proteins predictor.
    Ansari FA; Kumar N; Bala Subramanyam M; Gnanamani M; Ramachandran S
    Proteins; 2008 Feb; 70(3):659-66. PubMed ID: 17879344
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New proteins in the apicoplast membranes: time to rethink apicoplast protein targeting.
    Lim L; Kalanon M; McFadden GI
    Trends Parasitol; 2009 May; 25(5):197-200. PubMed ID: 19346163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatial dissection of the cis- and trans-Golgi compartments in the malaria parasite Plasmodium falciparum.
    Struck NS; Herrmann S; Schmuck-Barkmann I; de Souza Dias S; Haase S; Cabrera AL; Treeck M; Bruns C; Langer C; Cowman AF; Marti M; Spielmann T; Gilberger TW
    Mol Microbiol; 2008 Mar; 67(6):1320-30. PubMed ID: 18284574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.