These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 1684042)

  • 21. Partial opening and subconductance gating of mechanosensitive ion channels in dystrophic skeletal muscle.
    Vasquez I; Tan N; Boonyasampant M; Koppitch KA; Lansman JB
    J Physiol; 2012 Dec; 590(23):6167-85. PubMed ID: 22966155
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Open channel block by gadolinium ion of the stretch-inactivated ion channel in mdx myotubes.
    Franco A; Winegar BD; Lansman JB
    Biophys J; 1991 Jun; 59(6):1164-70. PubMed ID: 1714778
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dihydropyridine receptor gene expression in skeletal muscle from mdx and control mice.
    Péréon Y; Dettbarn C; Navarro J; Noireaud J; Palade PT
    Biochim Biophys Acta; 1997 Dec; 1362(2-3):201-7. PubMed ID: 9540851
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium entry through stretch-inactivated ion channels in mdx myotubes.
    Franco A; Lansman JB
    Nature; 1990 Apr; 344(6267):670-3. PubMed ID: 1691450
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Branched fibres in old dystrophic mdx muscle are associated with mechanical weakening of the sarcolemma, abnormal Ca2+ transients and a breakdown of Ca2+ homeostasis during fatigue.
    Head SI
    Exp Physiol; 2010 May; 95(5):641-56. PubMed ID: 20139167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sodium current and membrane potential in EDL muscle fibers from normal and dystrophic (mdx) mice.
    Mathes C; Bezanilla F; Weiss RE
    Am J Physiol; 1991 Oct; 261(4 Pt 1):C718-25. PubMed ID: 1928332
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Age-related calmitine distribution in mitochondria of normal and mdx mouse skeletal muscle.
    Lucas-Héron B; Schmitt N; Ollivier B
    J Neurol Sci; 1990 Nov; 99(2-3):349-53. PubMed ID: 2086733
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Muscular dystrophy in the mdx mouse: histopathology of the soleus and extensor digitorum longus muscles.
    Carnwath JW; Shotton DM
    J Neurol Sci; 1987 Aug; 80(1):39-54. PubMed ID: 3612180
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sarcoplasmic reticulum function in slow- and fast-twitch skeletal muscles from mdx mice.
    Divet A; Huchet-Cadiou C
    Pflugers Arch; 2002 Aug; 444(5):634-43. PubMed ID: 12194017
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resting calcium concentrations in isolated skeletal muscle fibres of dystrophic mice.
    Williams DA; Head SI; Bakker AJ; Stephenson DG
    J Physiol; 1990 Sep; 428():243-56. PubMed ID: 2231412
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts.
    Partridge TA; Morgan JE; Coulton GR; Hoffman EP; Kunkel LM
    Nature; 1989 Jan; 337(6203):176-9. PubMed ID: 2643055
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fibres of intermediate type 1C and 2C are found continuously in mdx soleus muscle up to 52 weeks.
    Pastoret C; Sebille A
    Histochemistry; 1993 Oct; 100(4):271-6. PubMed ID: 8276641
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced dystrophic progression in mdx mice by exercise and beneficial effects of taurine and insulin-like growth factor-1.
    De Luca A; Pierno S; Liantonio A; Cetrone M; Camerino C; Fraysse B; Mirabella M; Servidei S; Rüegg UT; Conte Camerino D
    J Pharmacol Exp Ther; 2003 Jan; 304(1):453-63. PubMed ID: 12490622
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Drastic reduction of sarcalumenin in Dp427 (dystrophin of 427 kDa)-deficient fibres indicates that abnormal calcium handling plays a key role in muscular dystrophy.
    Dowling P; Doran P; Ohlendieck K
    Biochem J; 2004 Apr; 379(Pt 2):479-88. PubMed ID: 14678011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased activity of calcium leak channels in myotubes of Duchenne human and mdx mouse origin.
    Fong PY; Turner PR; Denetclaw WF; Steinhardt RA
    Science; 1990 Nov; 250(4981):673-6. PubMed ID: 2173137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The frequency of revertants in mdx mouse genetic models for Duchenne muscular dystrophy.
    Danko I; Chapman V; Wolff JA
    Pediatr Res; 1992 Jul; 32(1):128-31. PubMed ID: 1635838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acidic fibroblast growth factor (aFGF) in developing normal and dystrophic (mdx) mouse muscles. Distribution in degenerating and regenerating mdx myofibres.
    Oliver L; Raulais D; Vigny M
    Growth Factors; 1992; 7(2):97-106. PubMed ID: 1384586
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spontaneous opening of the acetylcholine receptor channel in developing muscle cells from normal and dystrophic mice.
    Franco-Obregón A; Lansman JB
    J Neurosci Res; 1995 Nov; 42(4):452-8. PubMed ID: 8568931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of calcium on protein turnover of incubated muscles from mdx mice.
    MacLennan PA; McArdle A; Edwards RH
    Am J Physiol; 1991 Apr; 260(4 Pt 1):E594-8. PubMed ID: 2018123
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A growth stimulus is needed for IGF-1 to induce skeletal muscle hypertrophy in vivo.
    Shavlakadze T; Chai J; Maley K; Cozens G; Grounds G; Winn N; Rosenthal N; Grounds MD
    J Cell Sci; 2010 Mar; 123(Pt 6):960-71. PubMed ID: 20179101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.