These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 16840656)

  • 1. A metabolic basis for impaired muscle force production and neuromuscular compensation during sprint cycling.
    Bundle MW; Ernst CL; Bellizzi MJ; Wright S; Weyand PG
    Am J Physiol Regul Integr Comp Physiol; 2006 Nov; 291(5):R1457-64. PubMed ID: 16840656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sprint performance-duration relationships are set by the fractional duration of external force application.
    Weyand PG; Lin JE; Bundle MW
    Am J Physiol Regul Integr Comp Physiol; 2006 Mar; 290(3):R758-65. PubMed ID: 16254125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rates of performance loss and neuromuscular activity in men and women during cycling: evidence for a common metabolic basis of muscle fatigue.
    Sundberg CW; Hunter SK; Bundle MW
    J Appl Physiol (1985); 2017 Jan; 122(1):130-141. PubMed ID: 27856712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of duty cycle on the time course of muscle fatigue and the onset of neuromuscular compensation during exhaustive dynamic isolated limb exercise.
    Sundberg CW; Bundle MW
    Am J Physiol Regul Integr Comp Physiol; 2015 Jul; 309(1):R51-61. PubMed ID: 25876654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle deoxygenation and neural drive to the muscle during repeated sprint cycling.
    Racinais S; Bishop D; Denis R; Lattier G; Mendez-Villaneuva A; Perrey S
    Med Sci Sports Exerc; 2007 Feb; 39(2):268-74. PubMed ID: 17277590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromuscular fatigue following constant versus variable-intensity endurance cycling in triathletes.
    Lepers R; Theurel J; Hausswirth C; Bernard T
    J Sci Med Sport; 2008 Jul; 11(4):381-9. PubMed ID: 17499023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromuscular fatigue during a long-duration cycling exercise.
    Lepers R; Maffiuletti NA; Rochette L; Brugniaux J; Millet GY
    J Appl Physiol (1985); 2002 Apr; 92(4):1487-93. PubMed ID: 11896014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuromuscular fatigue of the knee extensors during repeated maximal intensity intermittent-sprints on a cycle ergometer.
    Pearcey GE; Murphy JR; Behm DG; Hay DC; Power KE; Button DC
    Muscle Nerve; 2015 Apr; 51(4):569-79. PubMed ID: 25043506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuromuscular fatigue of the elbow flexors during repeated maximal arm cycling sprints: the effects of forearm position.
    Lockyer EJ; Buckle NCM; Collins BW; Button DC
    Appl Physiol Nutr Metab; 2021 Jun; 46(6):606-616. PubMed ID: 33296273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromuscular fatigue is greater following highly variable versus constant intensity endurance cycling.
    Theurel J; Lepers R
    Eur J Appl Physiol; 2008 Jul; 103(4):461-8. PubMed ID: 18415118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue in repeated-sprint exercise is related to muscle power factors and reduced neuromuscular activity.
    Mendez-Villanueva A; Hamer P; Bishop D
    Eur J Appl Physiol; 2008 Jul; 103(4):411-9. PubMed ID: 18368419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peripheral neuromuscular fatigue induced by repeated-sprint exercise: cycling vs. running.
    Rampinini E; Connolly DR; Ferioli D; La Torre A; Alberti G; Bosio A
    J Sports Med Phys Fitness; 2016; 56(1-2):49-59. PubMed ID: 25289713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Power reserve following ramp-incremental cycling to exhaustion: implications for muscle fatigue and function.
    Hodgson MD; Keir DA; Copithorne DB; Rice CL; Kowalchuk JM
    J Appl Physiol (1985); 2018 Aug; 125(2):304-312. PubMed ID: 29698107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The magnitude of neuromuscular fatigue is not intensity dependent when cycling above critical power but relates to aerobic and anaerobic capacities.
    Schäfer LU; Hayes M; Dekerle J
    Exp Physiol; 2019 Feb; 104(2):209-219. PubMed ID: 30468691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of different pedal rates on oxygen uptake slow component during constant-load cycling exercise.
    Migita T; Hirakoba K
    J Sports Med Phys Fitness; 2006 Jun; 46(2):189-96. PubMed ID: 16823346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of high-intensity intermittent cycling sprints on neuromuscular activity.
    Billaut F; Basset FA; Giacomoni M; Lemaître F; Tricot V; Falgairette G
    Int J Sports Med; 2006 Jan; 27(1):25-30. PubMed ID: 16388438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repeated sprint ability but not neuromuscular fatigue is dependent on short versus long duration recovery time between sprints in healthy males.
    Monks MR; Compton CT; Yetman JD; Power KE; Button DC
    J Sci Med Sport; 2017 Jun; 20(6):600-605. PubMed ID: 27825551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromuscular characteristics and fatigue in endurance and sprint athletes during a new anaerobic power test.
    Paavolainen L; Häkkinen K; Nummela A; Rusko H
    Eur J Appl Physiol Occup Physiol; 1994; 69(2):119-26. PubMed ID: 7805665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle activation during cycling at different cadences: effect of maximal strength capacity.
    Bieuzen F; Lepers R; Vercruyssen F; Hausswirth C; Brisswalter J
    J Electromyogr Kinesiol; 2007 Dec; 17(6):731-8. PubMed ID: 16996277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A protocol for measuring the direct effect of cycling on neuromuscular control of running in triathletes.
    Chapman AR; Vicenzino B; Hodges PW; Blanch P; Hahn AG; Milner TE
    J Sports Sci; 2009 May; 27(7):767-82. PubMed ID: 19437184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.