These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 16840870)

  • 1. Ganglion cell loss and age-related visual loss: a cortical pooling analysis.
    Pearson PM; Schmidt LA; Ly-Schroeder E; Swanson WH
    Optom Vis Sci; 2006 Jul; 83(7):444-54. PubMed ID: 16840870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors.
    Anderson SJ; Mullen KT; Hess RF
    J Physiol; 1991 Oct; 442():47-64. PubMed ID: 1798037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of the human visual cortex and LGN to achromatic and chromatic temporal modulations: an fMRI study.
    Mullen KT; Thompson B; Hess RF
    J Vis; 2010 Nov; 10(13):13. PubMed ID: 21106678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selectivity of human retinotopic visual cortex to S-cone-opponent, L/M-cone-opponent and achromatic stimulation.
    Mullen KT; Dumoulin SO; McMahon KL; de Zubicaray GI; Hess RF
    Eur J Neurosci; 2007 Jan; 25(2):491-502. PubMed ID: 17284191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplitude of the transient visual evoked potential (tVEP) as a function of achromatic and chromatic contrast: contribution of different visual pathways.
    Souza GS; Gomes BD; Lacerda EM; Saito CA; da Silva Filho M; Silveira LC
    Vis Neurosci; 2008; 25(3):317-25. PubMed ID: 18321403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a two-stage neural model of glaucomatous defect: an approach to reduce test-retest variability.
    Pan F; Swanson WH; Dul MW
    Optom Vis Sci; 2006 Jul; 83(7):499-511. PubMed ID: 16840874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Independent patterns of damage within magno-, parvo- and koniocellular pathways in Parkinson's disease.
    Silva MF; Faria P; Regateiro FS; Forjaz V; Januário C; Freire A; Castelo-Branco M
    Brain; 2005 Oct; 128(Pt 10):2260-71. PubMed ID: 16000338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Normative Data Set for the Clinical Assessment of Achromatic and Chromatic Contrast Sensitivity Using a qCSF Approach.
    Kim YJ; Reynaud A; Hess RF; Mullen KT
    Invest Ophthalmol Vis Sci; 2017 Jul; 58(9):3628-3636. PubMed ID: 28728170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatic temporal integration and retinal eccentricity: psychophysics, neurometric analysis and cortical pooling.
    Swanson WH; Pan F; Lee BB
    Vision Res; 2008 Nov; 48(26):2657-62. PubMed ID: 18417185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixing of Chromatic and Luminance Retinal Signals in Primate Area V1.
    Li X; Chen Y; Lashgari R; Bereshpolova Y; Swadlow HA; Lee BB; Alonso JM
    Cereb Cortex; 2015 Jul; 25(7):1920-37. PubMed ID: 24464943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Psychophysical channels and ERP population responses in human visual cortex: area summation across chromatic and achromatic pathways.
    Ribeiro MJ; Castelo-Branco M
    Vision Res; 2010 Jun; 50(13):1283-91. PubMed ID: 20430049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. fMRI representational similarity analysis reveals graded preferences for chromatic and achromatic stimulus contrast across human visual cortex.
    Goddard E; Mullen KT
    Neuroimage; 2020 Jul; 215():116780. PubMed ID: 32276074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of chromatic and luminance information on reaction times.
    O'Donell BM; Barraza JF; Colombo EM
    Vis Neurosci; 2010 Jul; 27(3-4):119-29. PubMed ID: 20594382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pattern electroretinograms after cerebral hemispherectomy.
    Azzopardi P; King SM; Cowey A
    Brain; 2001 Jun; 124(Pt 6):1228-40. PubMed ID: 11353738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ganglion cell losses underlying visual field defects from experimental glaucoma.
    Harwerth RS; Carter-Dawson L; Shen F; Smith EL; Crawford ML
    Invest Ophthalmol Vis Sci; 1999 Sep; 40(10):2242-50. PubMed ID: 10476789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Pattern of Retinal Ganglion Cell Loss in OPA1-Related Autosomal Dominant Optic Atrophy Inferred From Temporal, Spatial, and Chromatic Sensitivity Losses.
    Majander A; João C; Rider AT; Henning GB; Votruba M; Moore AT; Yu-Wai-Man P; Stockman A
    Invest Ophthalmol Vis Sci; 2017 Jan; 58(1):502-516. PubMed ID: 28125838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of age on the area of complete spatial summation for chromatic and achromatic stimuli.
    Redmond T; Zlatkova MB; Garway-Heath DF; Anderson RS
    Invest Ophthalmol Vis Sci; 2010 Dec; 51(12):6533-9. PubMed ID: 20671282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential attentional modulation of cortical responses to S-cone and luminance stimuli.
    Wang J; Wade AR
    J Vis; 2011 May; 11(6):1. PubMed ID: 21543524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Red-green chromatic mechanisms in normal aging and glaucomatous observers.
    Karwatsky P; Overbury O; Faubert J
    Invest Ophthalmol Vis Sci; 2004 Aug; 45(8):2861-6. PubMed ID: 15277514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human vision with a lesion of the parvocellular pathway: an optic neuritis model for selective contrast sensitivity deficits with severe loss of midget ganglion cell function.
    Al-Hashmi AM; Kramer DJ; Mullen KT
    Exp Brain Res; 2011 Dec; 215(3-4):293-305. PubMed ID: 22006271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.