These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 16841916)

  • 1. Genetically engineered pfabA pfabR bacteria: an electrochemical whole cell biosensor for detection of water toxicity.
    Neufeld T; Biran D; Popovtzer R; Erez T; Ron EZ; Rishpon J
    Anal Chem; 2006 Jul; 78(14):4952-6. PubMed ID: 16841916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freeze-dried recombinant bacteria for on-site detection of phenolic compounds by color change.
    Shin HJ; Park HH; Lim WK
    J Biotechnol; 2005 Sep; 119(1):36-43. PubMed ID: 16051389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of whole-cell bacterial sensors in biotechnology and environmental science.
    Yagi K
    Appl Microbiol Biotechnol; 2007 Jan; 73(6):1251-8. PubMed ID: 17111136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-channel continuous toxicity monitoring system using recombinant bioluminescent bacteria for classification of toxicity.
    Gu MB; Gil GC
    Biosens Bioelectron; 2001 Dec; 16(9-12):661-6. PubMed ID: 11679242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-a-day electrochemical detection of coliforms in drinking water using a tyrosinase composite biosensor.
    Serra B; Morales MD; Zhang J; Reviejo AJ; Hall EH; Pingarron JM
    Anal Chem; 2005 Dec; 77(24):8115-21. PubMed ID: 16351163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection of a battery of rapid toxicity sensors for drinking water evaluation.
    van der Schalie WH; James RR; Gargan TP
    Biosens Bioelectron; 2006 Jul; 22(1):18-27. PubMed ID: 16406499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring aromatic hydrocarbons by whole cell electrochemical biosensors.
    Paitan Y; Biran I; Shechter N; Biran D; Rishpon J; Ron EZ
    Anal Biochem; 2004 Dec; 335(2):175-83. PubMed ID: 15556555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high sensitivity amperometric biosensor using laccase as biorecognition element.
    Vianello F; Ragusa S; Cambria MT; Rigo A
    Biosens Bioelectron; 2006 May; 21(11):2155-60. PubMed ID: 16293408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Invertase inhibition based electrochemical sensor for the detection of heavy metal ions in aqueous system: Application of ultra-microelectrode to enhance sucrose biosensor's sensitivity.
    Bagal-Kestwal D; Karve MS; Kakade B; Pillai VK
    Biosens Bioelectron; 2008 Dec; 24(4):657-64. PubMed ID: 18667298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of hormone active chemicals using genetically engineered yeast cells and microfluidic devices with interdigitated array electrodes.
    Ino K; Kitagawa Y; Watanabe T; Shiku H; Koide M; Itayama T; Yasukawa T; Matsue T
    Electrophoresis; 2009 Oct; 30(19):3406-12. PubMed ID: 19802852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein engineering and electrochemical biosensors.
    Lambrianou A; Demin S; Hall EA
    Adv Biochem Eng Biotechnol; 2008; 109():65-96. PubMed ID: 17960341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of bioavailable phenols from natural samples by recombinant luminescent bacterial sensors.
    Leedjärv A; Ivask A; Virta M; Kahru A
    Chemosphere; 2006 Sep; 64(11):1910-9. PubMed ID: 16581105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A genetically engineered whole-cell pigment-based bacterial biosensing system for quantification of N-butyryl homoserine lactone quorum sensing signal.
    Yong YC; Zhong JJ
    Biosens Bioelectron; 2009 Sep; 25(1):41-7. PubMed ID: 19574033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel E. coli biosensor for detecting aromatic aldehydes based on a responsive inducible archaeal promoter fused to the green fluorescent protein.
    Fiorentino G; Ronca R; Bartolucci S
    Appl Microbiol Biotechnol; 2009 Feb; 82(1):67-77. PubMed ID: 18998120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved cell sensitivity and longevity in a rapid impedance-based toxicity sensor.
    Curtis TM; Tabb J; Romeo L; Schwager SJ; Widder MW; van der Schalie WH
    J Appl Toxicol; 2009 Jul; 29(5):374-80. PubMed ID: 19267359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sposensor: a whole-bacterial biosensor that uses immobilized Bacillus subtilis spores and a one-step incubation/detection process.
    Fantino JR; Barras F; Denizot F
    J Mol Microbiol Biotechnol; 2009; 17(2):90-5. PubMed ID: 19258707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-line determination of nitrite in wastewater treatment by use of a biosensor.
    Nielsen M; Revsbech NP; Larsen LH; Lynggaard-Jensen A
    Water Sci Technol; 2002; 45(4-5):69-76. PubMed ID: 11936677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic models for detection of toxicity in a microbial fuel cell based biosensor.
    Stein NE; Keesman KJ; Hamelers HV; van Straten G
    Biosens Bioelectron; 2011 Mar; 26(7):3115-20. PubMed ID: 21216586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Online monitoring of water toxicity by use of bioluminescent reporter bacterial biochips.
    Elad T; Almog R; Yagur-Kroll S; Levkov K; Melamed S; Shacham-Diamand Y; Belkin S
    Environ Sci Technol; 2011 Oct; 45(19):8536-44. PubMed ID: 21875062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cell array biosensor for environmental toxicity analysis.
    Lee JH; Mitchell RJ; Kim BC; Cullen DC; Gu MB
    Biosens Bioelectron; 2005 Sep; 21(3):500-7. PubMed ID: 16076440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.