These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 16841946)
1. Cell motility probed by noise analysis of thickness shear mode resonators. Sapper A; Wegener J; Janshoff A Anal Chem; 2006 Jul; 78(14):5184-91. PubMed ID: 16841946 [TBL] [Abstract][Full Text] [Related]
2. The quartz crystal microbalance as a novel means to study cell-substrate interactions in situ. Wegener J; Janshoff A; Steinem C Cell Biochem Biophys; 2001; 34(1):121-51. PubMed ID: 11394439 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of human cancer cell lines monitored by electrical and acoustic fluctuation analysis. Tarantola M; Marel AK; Sunnick E; Adam H; Wegener J; Janshoff A Integr Biol (Camb); 2010 Mar; 2(2-3):139-50. PubMed ID: 20473392 [TBL] [Abstract][Full Text] [Related]
5. A comparative study of the cytoskeleton binding drugs nocodazole and taxol with a mammalian cell quartz crystal microbalance biosensor: different dynamic responses and energy dissipation effects. Marx KA; Zhou T; Montrone A; McIntosh D; Braunhut SJ Anal Biochem; 2007 Feb; 361(1):77-92. PubMed ID: 17161375 [TBL] [Abstract][Full Text] [Related]
6. Dynamic measurement of the surface stress induced by the attachment and growth of cells on Au electrode with a quartz crystal microbalance. Tan L; Xie Q; Jia X; Guo M; Zhang Y; Tang H; Yao S Biosens Bioelectron; 2009 Feb; 24(6):1603-9. PubMed ID: 18824347 [TBL] [Abstract][Full Text] [Related]
7. Convergence of dissipation and impedance analysis of quartz crystal microbalance studies. Zhang Y; Du B; Chen X; Ma H Anal Chem; 2009 Jan; 81(2):642-8. PubMed ID: 19072247 [TBL] [Abstract][Full Text] [Related]
8. Measurements of fast fluctuations of viscoelastic properties with the quartz crystal microbalance. Pax M; Rieger J; Eibl RH; Thielemann C; Johannsmann D Analyst; 2005 Nov; 130(11):1474-7. PubMed ID: 16222366 [TBL] [Abstract][Full Text] [Related]
9. Use of electric cell-substrate impedance sensing as a tool for quantifying cytopathic effect in influenza A virus infected MDCK cells in real-time. McCoy MH; Wang E J Virol Methods; 2005 Dec; 130(1-2):157-61. PubMed ID: 16095727 [TBL] [Abstract][Full Text] [Related]
10. Monitoring cell adhesion by using thickness shear mode acoustic wave sensors. Li F; Wang JH; Wang QM Biosens Bioelectron; 2007 Aug; 23(1):42-50. PubMed ID: 17485202 [TBL] [Abstract][Full Text] [Related]
11. Quartz crystal microbalance based on torsional piezoelectric resonators. Bücking W; Du B; Turshatov A; König AM; Reviakine I; Bode B; Johannsmann D Rev Sci Instrum; 2007 Jul; 78(7):074903. PubMed ID: 17672786 [TBL] [Abstract][Full Text] [Related]
12. Real time monitoring of the effects of Heparan Sulfate Proteoglycan (HSPG) and surface charge on the cell adhesion process using thickness shear mode (TSM) sensor. Ergezen E; Hong S; Barbee KA; Lec R Biosens Bioelectron; 2007 Apr; 22(9-10):2256-60. PubMed ID: 17175157 [TBL] [Abstract][Full Text] [Related]
13. Adhesion of eukaryotic cell lines on the gold surface modified with extracellular matrix proteins monitored by the piezoelectric sensor. Fohlerová Z; Skládal P; Turánek J Biosens Bioelectron; 2007 Apr; 22(9-10):1896-901. PubMed ID: 16979332 [TBL] [Abstract][Full Text] [Related]
14. Dynamic changes of acoustic load and complex impedance as reporters for the cytotoxicity of small molecule inhibitors. Tarantola M; Sunnick E; Schneider D; Marel AK; Kunze A; Janshoff A Chem Res Toxicol; 2011 Sep; 24(9):1494-506. PubMed ID: 21815656 [TBL] [Abstract][Full Text] [Related]
15. Effects of interface slip and viscoelasticity on the dynamic response of droplet quartz crystal microbalances. Zhuang H; Lu P; Lim SP; Lee HP Anal Chem; 2008 Oct; 80(19):7347-53. PubMed ID: 18767868 [TBL] [Abstract][Full Text] [Related]
16. Decoupling of the liquid response of a superhydrophobic quartz crystal microbalance. Roach P; McHale G; Evans CR; Shirtcliffe NJ; Newton MI Langmuir; 2007 Sep; 23(19):9823-30. PubMed ID: 17705513 [TBL] [Abstract][Full Text] [Related]
17. On the applicability of high frequency acoustic shear mode biosensing in view of thickness limitations set by the film resonance. Wingqvist G; Anderson H; Lennartsson C; Weissbach T; Yantchev V; Spetz AL Biosens Bioelectron; 2009 Jul; 24(11):3387-90. PubMed ID: 19447595 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the composite response of shear wave resonators to the attachment of mammalian cells. Wegener J; Seebach J; Janshoff A; Galla HJ Biophys J; 2000 Jun; 78(6):2821-33. PubMed ID: 10827965 [TBL] [Abstract][Full Text] [Related]
19. A computational modeling and analysis in cell biological dynamics using electric cell-substrate impedance sensing (ECIS). Chen SW; Yang JM; Yang JH; Yang SJ; Wang JS Biosens Bioelectron; 2012 Mar; 33(1):196-203. PubMed ID: 22261483 [TBL] [Abstract][Full Text] [Related]
20. Utilizing QCM-D to characterize the adhesive mucilage secreted by two marine diatom species in-situ and in real-time. Molino PJ; Hodson OM; Quinn JF; Wetherbee R Biomacromolecules; 2006 Nov; 7(11):3276-82. PubMed ID: 17096561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]