These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 1684202)

  • 1. Neurochemical and immunocytochemical studies of catecholamine system in the brindled mouse.
    Satoh J; Irino M; Martin PM; Mailman RB; Suzuki K
    J Neuropathol Exp Neurol; 1991 Nov; 50(6):793-808. PubMed ID: 1684202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abnormalities of Purkinje cell arborization in brindled mouse cerebellum. A Golgi study.
    Yamano T; Suzuki K
    J Neuropathol Exp Neurol; 1985 Jan; 44(1):85-96. PubMed ID: 4038413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered ATP7A expression and other compensatory responses in a murine model of Menkes disease.
    Niciu MJ; Ma XM; El Meskini R; Pachter JS; Mains RE; Eipper BA
    Neurobiol Dis; 2007 Sep; 27(3):278-91. PubMed ID: 17588765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal degeneration in the brain of the brindled mouse--a light microscope study.
    Yajima K; Suzuki K
    J Neuropathol Exp Neurol; 1979 Jan; 38(1):35-46. PubMed ID: 571007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid increases in glial fibrillary acidic protein mRNA and protein levels in the copper-deficient, brindled mouse.
    Shafit-Zagardo B; Peterson C; Goldman JE
    J Neurochem; 1988 Oct; 51(4):1258-66. PubMed ID: 3047319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical study on the critical period for treatment of the mottled brindled mouse.
    Fujii T; Ito M; Tsuda H; Mikawa H
    J Neurochem; 1990 Sep; 55(3):885-9. PubMed ID: 2166774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper metabolism in mottled mouse mutants. The effect of copper therapy on lysyl oxidase activity in brindled (Mobr) mice.
    Royce PM; Camakaris J; Mann JR; Danks DM
    Biochem J; 1982 Feb; 202(2):369-71. PubMed ID: 6124241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of the catecholamine neurons in human embryos and fetuses, with special emphasis on the innervation of the cerebral cortex.
    Zecevic N; Verney C
    J Comp Neurol; 1995 Jan; 351(4):509-35. PubMed ID: 7721981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ultrastructural study on the cerebellum of the brindled mouse.
    Nagara H; Yajima K; Suzuki K
    Acta Neuropathol; 1980; 52(1):41-50. PubMed ID: 7435155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The female brindled mouse as a model of Menkes' disease: the relationship of fur pattern to behavioral and neurochemical abnormalities.
    Martin PM; Irino M; Suzuki K; Lewis MH; Mailman RB
    Dev Neurosci; 1991; 13(3):121-9. PubMed ID: 1752214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distributions of tyrosine hydroxylase-, dopamine-beta-hydroxylase-, and phenylethanolamine-N-methyltransferase-immunoreactive neurons in the brain of the hamster (Mesocricetus auratus).
    Vincent SR
    J Comp Neurol; 1988 Feb; 268(4):584-99. PubMed ID: 2895779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal degeneration in the brain of the brindled mouse. I. Chromological studies on the long-surviving group.
    Yajima K; Suzuki K
    Acta Neuropathol; 1979 Nov; 48(2):127-32. PubMed ID: 228521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brindled mottled mouse: morphological changes of brain and visceral organs in hemizygous males following copper supplementation.
    Suzuki K; Nagara H
    Acta Neuropathol; 1981; 55(4):251-5. PubMed ID: 6277138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of copper supplementation on the brindled mouse: a clinico-pathological study.
    Nagara H; Yajima K; Suzuki K
    J Neuropathol Exp Neurol; 1981 Jul; 40(4):428-46. PubMed ID: 7195926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early evidence of catecholaminergic cell groups in 5- and 6-week-old human embryos using tyrosine hydroxylase and dopamine-beta-hydroxylase immunocytochemistry.
    Verney C; Zecevic N; Nikolic B; Alvarez C; Berger B
    Neurosci Lett; 1991 Sep; 131(1):121-4. PubMed ID: 1686476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deficiency of catecholamine syntheses caused by downregulation of phosphorylation of tyrosine hydroxylase in the cerebral cortex of the senescence-accelerated mouse prone 10 strain with aging.
    Miyajima M; Numata T; Minoshima M; Tanaka M; Nishimura R; Hosokawa T; Kurasaki M; Saito T
    Arch Gerontol Geriatr; 2013; 56(1):68-74. PubMed ID: 22738763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The distribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific.
    Lewis DA; Campbell MJ; Foote SL; Goldstein M; Morrison JH
    J Neurosci; 1987 Jan; 7(1):279-90. PubMed ID: 2879896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuropeptide Y- and catecholamine-synthesizing enzymes: immunoreactivities in the rat carotid body during postnatal development.
    Oomori Y; Murabayashi H; Ishikawa K; Miyakawa K; Nakaya K; Tanaka H
    Anat Embryol (Berl); 2002 Dec; 206(1-2):37-47. PubMed ID: 12478366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase.
    Gaspar P; Berger B; Febvret A; Vigny A; Henry JP
    J Comp Neurol; 1989 Jan; 279(2):249-71. PubMed ID: 2563268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pontine norepinephrine defects in Mecp2-null mice involve deficient expression of dopamine beta-hydroxylase but not a loss of catecholaminergic neurons.
    Zhang X; Su J; Rojas A; Jiang C
    Biochem Biophys Res Commun; 2010 Apr; 394(2):285-90. PubMed ID: 20193660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.