BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 16842108)

  • 1. Non-additive counteraction of KCl-perturbation of lactate dehydrogenase by trimethylamine N-oxide.
    Desmond MK; Siebenaller JF
    Protein Pept Lett; 2006; 13(6):555-7. PubMed ID: 16842108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trimethylamine-N-oxide counteracts urea effects on rabbit muscle lactate dehydrogenase function: a test of the counteraction hypothesis.
    Baskakov I; Wang A; Bolen DW
    Biophys J; 1998 May; 74(5):2666-73. PubMed ID: 9591690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-dependent effects of trimethylamine-N-oxide/urea on lactate dehydrogenase activity: an unexplored dimension of the adaptation paradigm.
    Baskakov I; Bolen DW
    Biophys J; 1998 May; 74(5):2658-65. PubMed ID: 9591689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perturbation of folding and reassociation of lactate dehydrogenase by proline and trimethylamine oxide.
    Chilson OP; Chilson AE
    Eur J Biochem; 2003 Dec; 270(24):4823-34. PubMed ID: 14653809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of ionic strength on contractile force and energy consumption of skinned fibers from mammalian and crustacean striated muscle.
    Godt RE; Fogaça RT; Andrews MA; Nosek TM
    Adv Exp Med Biol; 1993; 332():763-73; discussion 773-4. PubMed ID: 8109386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural methylamine osmolytes, trimethylamine N-oxide and betaine, increase tau-induced polymerization of microtubules.
    Tseng HC; Graves DJ
    Biochem Biophys Res Commun; 1998 Sep; 250(3):726-30. PubMed ID: 9784413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative characterization of the compensating effects of trimethylamine-N-oxide and guanidine hydrochloride on the dissociation of human cyanmethmoglobin.
    Wu D; Minton AP
    J Phys Chem B; 2013 Aug; 117(32):9395-9. PubMed ID: 23863125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trimethylamine oxide, betaine and other osmolytes in deep-sea animals: depth trends and effects on enzymes under hydrostatic pressure.
    Yancey PH; Rhea MD; Kemp KM; Bailey DM
    Cell Mol Biol (Noisy-le-grand); 2004 Jun; 50(4):371-6. PubMed ID: 15529747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of trimethylamine oxide and betaine in swine diets on growth performance, carcass characteristics, nutrient digestibility, and sensory quality of pork.
    Overland M; Rørvik KA; Skrede A
    J Anim Sci; 1999 Aug; 77(8):2143-53. PubMed ID: 10461993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of osmolytes on protein dynamics in the lactate dehydrogenase-catalyzed reaction.
    Zhadin N; Callender R
    Biochemistry; 2011 Mar; 50(10):1582-9. PubMed ID: 21306147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Counteraction of urea-induced protein denaturation by trimethylamine N-oxide: a chemical chaperone at atomic resolution.
    Bennion BJ; Daggett V
    Proc Natl Acad Sci U S A; 2004 Apr; 101(17):6433-8. PubMed ID: 15096583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The effect of urea on the activity of lactate dehydrogenase from the muscles of swine and skates].
    Lushchak VI; Lushchak LP
    Zh Evol Biokhim Fiziol; 1994; 30(2):185-91. PubMed ID: 7817654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trimethylamine oxide counteracts effects of hydrostatic pressure on proteins of deep-sea teleosts.
    Yancey PH; Fyfe-Johnson AL; Kelly RH; Walker VP; Auñón MT
    J Exp Zool; 2001 Feb; 289(3):172-6. PubMed ID: 11170013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trimethylamine oxide stabilizes teleost and mammalian lactate dehydrogenases against inactivation by hydrostatic pressure and trypsinolysis.
    Yancey PH; Siebenaller JF
    J Exp Biol; 1999 Dec; 202(Pt 24):3597-603. PubMed ID: 10574736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion-specific protein destabilization of the contractile proteins of cardiac muscle fibers.
    Nosek TM; Andrews MA
    Pflugers Arch; 1998 Feb; 435(3):394-401. PubMed ID: 9426296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of S-peptide analogue in aqueous urea and trimethylamine-N-oxide solutions: a molecular dynamics simulation study.
    Sarma R; Paul S
    J Chem Phys; 2013 Jul; 139(3):034504. PubMed ID: 23883044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Singular efficacy of trimethylamine N-oxide to counter protein destabilization in ice.
    Strambini GB; Gonnelli M
    Biochemistry; 2008 Mar; 47(11):3322-31. PubMed ID: 18293933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of halophilic nucleoside diphosphate kinase by a non-ionic osmolyte, trimethylamine N-oxide.
    Ishibashi M; Sakashita K; Tokunaga H; Arakawa T; Tokunaga M
    J Protein Chem; 2003 May; 22(4):345-51. PubMed ID: 13678298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of urea and trimethylamine-N-oxide (TMAO) on the interactions of lysozyme in solution.
    Niebuhr M; Koch MH
    Biophys J; 2005 Sep; 89(3):1978-83. PubMed ID: 15980169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trimethylamine N-oxide Counteracts Urea Denaturation by Inhibiting Protein-Urea Preferential Interaction.
    Ganguly P; Boserman P; van der Vegt NFA; Shea JE
    J Am Chem Soc; 2018 Jan; 140(1):483-492. PubMed ID: 29214802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.