These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 16842116)

  • 1. Determination of mutation trend in hemagglutinins by means of translation probability between RNA codons and mutated amino acids.
    Wu G; Yan S
    Protein Pept Lett; 2006; 13(6):601-9. PubMed ID: 16842116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of mutation trend in proteins by means of translation probability between RNA codes and mutated amino acids.
    Wu G; Yan S
    Biochem Biophys Res Commun; 2005 Nov; 337(2):692-700. PubMed ID: 16202392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of mutation trend in hemagglutinins and neuraminidases from influenza A viruses by means of cross-impact analysis.
    Wu G; Yan S
    Biochem Biophys Res Commun; 2005 Jan; 326(2):475-82. PubMed ID: 15582602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of mutations in H5N1 hemagglutinins from influenza A virus.
    Wu G; Yan S
    Protein Pept Lett; 2006; 13(10):971-6. PubMed ID: 17168817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of mutations engineered by randomness in H5N1 hemagglutinins of influenza A virus.
    Wu G; Yan S
    Amino Acids; 2008 Aug; 35(2):365-73. PubMed ID: 17973072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Codon compression algorithms for saturation mutagenesis.
    Pines G; Pines A; Garst AD; Zeitoun RI; Lynch SA; Gill RT
    ACS Synth Biol; 2015 May; 4(5):604-14. PubMed ID: 25303315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rationale for cross-species infection and cross-subtype mutation in hemagglutinins from influenza A virus.
    Yan SM; Wu G
    Interdiscip Sci; 2009 Dec; 1(4):303-7. PubMed ID: 20640809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Timing of mutation in influenza A virus hemagglutinins by means of amino-acid distribution rank and fast Fourier transform.
    Wu G; Yan S
    Protein Pept Lett; 2006; 13(2):143-8. PubMed ID: 16472076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying Amino Acid Overproducers Using Rare-Codon-Rich Markers.
    Huo YX; Zheng B; Wang N; Yang Y; Liang X; Ma X
    J Vis Exp; 2019 Jun; (148):. PubMed ID: 31282885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping mutations in influenza A virus resistant to norakin.
    Prösch S; Heider H; Schroeder C; Shilov AA; Sinitzyn BV; Blinov VM; Krüger DH; Frömmel C
    FEBS Lett; 1990 Jul; 267(1):19-21. PubMed ID: 2365087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The universal trend of amino acid gain-loss is caused by CpG hypermutability.
    Misawa K; Kamatani N; Kikuno RF
    J Mol Evol; 2008 Oct; 67(4):334-42. PubMed ID: 18810523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Four-base codon-mediated incorporation of non-natural amino acids into proteins in a eukaryotic cell-free translation system.
    Taira H; Fukushima M; Hohsaka T; Sisido M
    J Biosci Bioeng; 2005 May; 99(5):473-6. PubMed ID: 16233819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Codon bias as a factor in regulating expression via translation rate in the human genome.
    Lavner Y; Kotlar D
    Gene; 2005 Jan; 345(1):127-38. PubMed ID: 15716084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of peptides that are specified by complementary RNAs.
    Blalock JE; Bost KL
    Biochem J; 1986 Mar; 234(3):679-83. PubMed ID: 2424434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Five-base codons for incorporation of nonnatural amino acids into proteins.
    Hohsaka T; Ashizuka Y; Murakami H; Sisido M
    Nucleic Acids Res; 2001 Sep; 29(17):3646-51. PubMed ID: 11522835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporation of nonnatural amino acids into proteins by using various four-base codons in an Escherichia coli in vitro translation system.
    Hohsaka T; Ashizuka Y; Taira H; Murakami H; Sisido M
    Biochemistry; 2001 Sep; 40(37):11060-4. PubMed ID: 11551202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid and codon use: in two influenza viruses and three hosts.
    Scapoli C; De Lorenzi S; Salvatorelli G; Barrai I
    Med Mal Infect; 2007 Jun; 37(6):337-42. PubMed ID: 17336013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effective number of codons for individual amino acids: some codons are more optimal than others.
    Fuglsang A
    Gene; 2003 Nov; 320():185-90. PubMed ID: 14597402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amber codon-mediated expanded saturation mutagenesis of proteins using a cell-free translation system.
    Shozen N; Watanabe T; Hohsaka T
    J Biosci Bioeng; 2012 Jun; 113(6):704-9. PubMed ID: 22365415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of carrier tRNAs and selection of four-base codons for efficient incorporation of various nonnatural amino acids into proteins in Spodoptera frugiperda 21 (Sf21) insect cell-free translation system.
    Taki M; Tokuda Y; Ohtsuki T; Sisido M
    J Biosci Bioeng; 2006 Dec; 102(6):511-7. PubMed ID: 17270715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.