These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
349 related articles for article (PubMed ID: 16842264)
1. Strategies for development of vaccines for control of ixodid tick species. de la Fuente J; Kocan KM Parasite Immunol; 2006 Jul; 28(7):275-83. PubMed ID: 16842264 [TBL] [Abstract][Full Text] [Related]
2. Advances in the identification and characterization of protective antigens for recombinant vaccines against tick infestations. de la Fuente J; Kocan KM Expert Rev Vaccines; 2003 Aug; 2(4):583-93. PubMed ID: 14711342 [TBL] [Abstract][Full Text] [Related]
3. Exposed and concealed antigens as vaccine targets for controlling ticks and tick-borne diseases. Nuttall PA; Trimnell AR; Kazimirova M; Labuda M Parasite Immunol; 2006 Apr; 28(4):155-63. PubMed ID: 16542317 [TBL] [Abstract][Full Text] [Related]
4. Upcoming and future strategies of tick control: a review. Ghosh S; Azhahianambi P; Yadav MP J Vector Borne Dis; 2007 Jun; 44(2):79-89. PubMed ID: 17722860 [TBL] [Abstract][Full Text] [Related]
5. Identification of protective antigens by RNA interference for control of the lone star tick, Amblyomma americanum. de la Fuente J; Manzano-Roman R; Naranjo V; Kocan KM; Zivkovic Z; Blouin EF; Canales M; Almazán C; Galindo RC; Step DL; Villar M Vaccine; 2010 Feb; 28(7):1786-95. PubMed ID: 20018267 [TBL] [Abstract][Full Text] [Related]
6. Tick vaccines: current status and future directions. de la Fuente J; Contreras M Expert Rev Vaccines; 2015; 14(10):1367-76. PubMed ID: 26289976 [TBL] [Abstract][Full Text] [Related]
7. RNA interference for the study and genetic manipulation of ticks. de la Fuente J; Kocan KM; Almazán C; Blouin EF Trends Parasitol; 2007 Sep; 23(9):427-33. PubMed ID: 17656154 [TBL] [Abstract][Full Text] [Related]
8. Interactomics and tick vaccine development: new directions for the control of tick-borne diseases. Artigas-Jerónimo S; De La Fuente J; Villar M Expert Rev Proteomics; 2018 Aug; 15(8):627-635. PubMed ID: 30067120 [TBL] [Abstract][Full Text] [Related]
9. Strategies for new and improved vaccines against ticks and tick-borne diseases. de la Fuente J; Kopáček P; Lew-Tabor A; Maritz-Olivier C Parasite Immunol; 2016 Dec; 38(12):754-769. PubMed ID: 27203187 [TBL] [Abstract][Full Text] [Related]
10. Applying proteomics to tick vaccine development: where are we? Villar M; Marina A; de la Fuente J Expert Rev Proteomics; 2017 Mar; 14(3):211-221. PubMed ID: 28099817 [TBL] [Abstract][Full Text] [Related]
11. Tick control: thoughts on a research agenda. Willadsen P Vet Parasitol; 2006 May; 138(1-2):161-8. PubMed ID: 16497440 [TBL] [Abstract][Full Text] [Related]
12. Modeling tick vaccines: a key tool to improve protection efficacy. de la Fuente J; Estrada-Peña A; Contreras M Expert Rev Vaccines; 2020 Mar; 19(3):217-225. PubMed ID: 32192377 [No Abstract] [Full Text] [Related]
13. Targeting a global health problem: Vaccine design and challenges for the control of tick-borne diseases. de la Fuente J; Contreras M; Estrada-Peña A; Cabezas-Cruz A Vaccine; 2017 Sep; 35(38):5089-5094. PubMed ID: 28780117 [TBL] [Abstract][Full Text] [Related]
14. Prevention and control strategies for ticks and pathogen transmission. de La Fuente J; Kocan KM; Contreras M Rev Sci Tech; 2015 Apr; 34(1):249-64. PubMed ID: 26470461 [TBL] [Abstract][Full Text] [Related]
15. High throughput discovery and characterization of tick and pathogen vaccine protective antigens using vaccinomics with intelligent Big Data analytic techniques. De La Fuente J; Villar M; Estrada-Peña A; Olivas JA Expert Rev Vaccines; 2018 Jul; 17(7):569-576. PubMed ID: 29953298 [TBL] [Abstract][Full Text] [Related]
16. Vaccinomics, the new road to tick vaccines. de la Fuente J; Merino O Vaccine; 2013 Dec; 31(50):5923-9. PubMed ID: 24396872 [TBL] [Abstract][Full Text] [Related]
17. Tick vaccines and the transmission of tick-borne pathogens. de la Fuente J; Kocan KM; Blouin EF Vet Res Commun; 2007 Aug; 31 Suppl 1():85-90. PubMed ID: 17682852 [TBL] [Abstract][Full Text] [Related]
18. The importance of protein glycosylation in development of novel tick vaccine strategies. de la Fuente J; Canales M; Kocan KM Parasite Immunol; 2006 Dec; 28(12):687-8. PubMed ID: 17096649 [No Abstract] [Full Text] [Related]
19. Anaplasmosis: focusing on host-vector-pathogen interactions for vaccine development. de la Fuente J; Ayoubi P; Blouin EF; Almazán C; Naranjo V; Kocan KM Ann N Y Acad Sci; 2006 Oct; 1078():416-23. PubMed ID: 17114750 [TBL] [Abstract][Full Text] [Related]
20. Identification of novel tick salivary gland proteins for vaccine development. Xu Y; Bruno JF; Luft BJ Biochem Biophys Res Commun; 2005 Jan; 326(4):901-4. PubMed ID: 15607754 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]