These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 16842384)
1. The in vitro metabolism of irinotecan (CPT-11) by carboxylesterase and beta-glucuronidase in human colorectal tumours. Tobin P; Clarke S; Seale JP; Lee S; Solomon M; Aulds S; Crawford M; Gallagher J; Eyers T; Rivory L Br J Clin Pharmacol; 2006 Jul; 62(1):122-9. PubMed ID: 16842384 [TBL] [Abstract][Full Text] [Related]
2. The relative contributions of carboxylesterase and beta-glucuronidase in the formation of SN-38 in human colorectal tumours. Tobin PJ; Dodds HM; Clarke S; Schnitzler M; Rivory LP Oncol Rep; 2003; 10(6):1977-9. PubMed ID: 14534729 [TBL] [Abstract][Full Text] [Related]
3. The importance of tumor glucuronidase in the activation of irinotecan in a mouse xenograft model. Dodds HM; Tobin PJ; Stewart CF; Cheshire P; Hanna S; Houghton P; Rivory LP J Pharmacol Exp Ther; 2002 Nov; 303(2):649-55. PubMed ID: 12388647 [TBL] [Abstract][Full Text] [Related]
4. Local enzymatic hydrolysis of an endogenously generated metabolite can enhance CPT-11 anticancer efficacy. Prijovich ZM; Chen KC; Roffler SR Mol Cancer Ther; 2009 Apr; 8(4):940-6. PubMed ID: 19372567 [TBL] [Abstract][Full Text] [Related]
5. Impact of obesity on accumulation of the toxic irinotecan metabolite, SN-38, in mice. Mallick P; Shah P; Gandhi A; Ghose R Life Sci; 2015 Oct; 139():132-8. PubMed ID: 26334566 [TBL] [Abstract][Full Text] [Related]
6. Cellular parameters predictive of the clinical response of colorectal cancers to irinotecan. A preliminary study. Pavillard V; Charasson V; Laroche-Clary A; Soubeyran I; Robert J Anticancer Res; 2004; 24(2B):579-85. PubMed ID: 15160997 [TBL] [Abstract][Full Text] [Related]
8. Determinants of the cytotoxicity of irinotecan in two human colorectal tumor cell lines. Pavillard V; Agostini C; Richard S; Charasson V; Montaudon D; Robert J Cancer Chemother Pharmacol; 2002 Apr; 49(4):329-35. PubMed ID: 11914913 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of CPT-11 antitumor activity by adenovirus-mediated expression of β-glucuronidase in tumors. Huang PT; Chen KC; Prijovich ZM; Cheng TL; Leu YL; Roffler SR Cancer Gene Ther; 2011 Jun; 18(6):381-9. PubMed ID: 21350582 [TBL] [Abstract][Full Text] [Related]
10. Identification and kinetics of a beta-glucuronide metabolite of SN-38 in human plasma after administration of the camptothecin derivative irinotecan. Rivory LP; Robert J Cancer Chemother Pharmacol; 1995; 36(2):176-9. PubMed ID: 7767955 [TBL] [Abstract][Full Text] [Related]
11. Streptomycin alleviates irinotecan-induced delayed-onset diarrhea in rats by a mechanism other than inhibition of β-glucuronidase activity in intestinal lumen. Kurita A; Kado S; Matsumoto T; Asakawa N; Kaneda N; Kato I; Uchida K; Onoue M; Yokokura T Cancer Chemother Pharmacol; 2011 Jan; 67(1):201-13. PubMed ID: 20354702 [TBL] [Abstract][Full Text] [Related]
12. Intravenous administration of irinotecan elevates the blood beta-glucuronidase activity in rats. Kaneda N; Kurita A; Hosokawa Y; Yokokura T; Awazu S Cancer Res; 1997 Dec; 57(23):5305-8. PubMed ID: 9393754 [TBL] [Abstract][Full Text] [Related]
13. Determination of drug interactions occurring with the metabolic pathways of irinotecan. Charasson V; Haaz MC; Robert J Drug Metab Dispos; 2002 Jun; 30(6):731-3. PubMed ID: 12019202 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of intestinal microflora beta-glucuronidase modifies the distribution of the active metabolite of the antitumor agent, irinotecan hydrochloride (CPT-11) in rats. Takasuna K; Hagiwara T; Hirohashi M; Kato M; Nomura M; Nagai E; Yokoi T; Kamataki T Cancer Chemother Pharmacol; 1998; 42(4):280-6. PubMed ID: 9744772 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of beta-glucuronidase by natural glucuronides of kampo medicines using glucuronide of SN-38 (7-ethyl-10-hydroxycamptothecin) as a substrate. Narita M; Nagai E; Hagiwara H; Aburada M; Yokoi T; Kamataki T Xenobiotica; 1993 Jan; 23(1):5-10. PubMed ID: 8484262 [TBL] [Abstract][Full Text] [Related]
16. Conversion of the CPT-11 metabolite APC to SN-38 by rabbit liver carboxylesterase. Guichard SM; Morton CL; Krull EJ; Stewart CF; Danks MK; Potter PM Clin Cancer Res; 1998 Dec; 4(12):3089-94. PubMed ID: 9865925 [TBL] [Abstract][Full Text] [Related]
17. Characterization of CPT-11 converting carboxylesterase activity in colon tumor and normal tissues: comparison with p-nitro-phenylacetate converting carboxylesterase activity. Hennebelle I; Terret C; Chatelut E; Bugat R; Canal P; Guichard S Anticancer Drugs; 2000 Jul; 11(6):465-70. PubMed ID: 11001387 [TBL] [Abstract][Full Text] [Related]
18. Bioactivation of the anticancer agent CPT-11 to SN-38 by human hepatic microsomal carboxylesterases and the in vitro assessment of potential drug interactions. Slatter JG; Su P; Sams JP; Schaaf LJ; Wienkers LC Drug Metab Dispos; 1997 Oct; 25(10):1157-64. PubMed ID: 9321519 [TBL] [Abstract][Full Text] [Related]
19. Impediments to enhancement of CPT-11 anticancer activity by E. coli directed beta-glucuronidase therapy. Hsieh YT; Chen KC; Cheng CM; Cheng TL; Tao MH; Roffler SR PLoS One; 2015; 10(2):e0118028. PubMed ID: 25688562 [TBL] [Abstract][Full Text] [Related]
20. The transformation of irinotecan (CPT-11) to its active metabolite SN-38 by human liver microsomes. Differential hydrolysis for the lactone and carboxylate forms. Haaz MC; Rivory LP; Riché C; Robert J Naunyn Schmiedebergs Arch Pharmacol; 1997 Aug; 356(2):257-62. PubMed ID: 9272733 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]