These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 16842643)
1. Low-cost nanomanipulator for in situ experiments in a SEM. Nakabayashi D; Silva PC; González JC; Rodrigues V; Ugarte D Microsc Microanal; 2006 Aug; 12(4):311-6. PubMed ID: 16842643 [TBL] [Abstract][Full Text] [Related]
2. Nanomanipulator-assisted fabrication and characterization of carbon nanotubes inside scanning electron microscope. Lim SC; Kim KS; Lee IB; Jeong SY; Cho S; Yoo JE; Lee YH Micron; 2005; 36(5):471-6. PubMed ID: 15896968 [TBL] [Abstract][Full Text] [Related]
3. Nanomanipulation and nanofabrication with multi-probe scanning tunneling microscope: from individual atoms to nanowires. Qin S; Kim TH; Wang Z; Li AP Rev Sci Instrum; 2012 Jun; 83(6):063704. PubMed ID: 22755631 [TBL] [Abstract][Full Text] [Related]
4. A compact multipurpose nanomanipulator for use inside a scanning electron microscope. Heeres EC; Katan AJ; van Es MH; Beker AF; Hesselberth M; van der Zalm DJ; Oosterkamp TH Rev Sci Instrum; 2010 Feb; 81(2):023704. PubMed ID: 20192499 [TBL] [Abstract][Full Text] [Related]
5. A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly. Xie H; Haliyo DS; Régnier S Nanotechnology; 2009 May; 20(21):215301. PubMed ID: 19423927 [TBL] [Abstract][Full Text] [Related]
6. High-resolution noncontact atomic force microscopy. Pérez R; García R; Schwarz U Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843 [TBL] [Abstract][Full Text] [Related]
7. Novel planar field emission of ultra-thin individual carbon nanotubes. Song X; Gao J; Fu Q; Xu J; Zhao Q; Yu D Nanotechnology; 2009 Oct; 20(40):405208. PubMed ID: 19752498 [TBL] [Abstract][Full Text] [Related]
8. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes. Capek I Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856 [TBL] [Abstract][Full Text] [Related]
9. In situ electron microscopy electromechanical characterization of a bistable NEMS device. Ke C; Espinosa HD Small; 2006 Dec; 2(12):1484-9. PubMed ID: 17193010 [TBL] [Abstract][Full Text] [Related]
10. Facile decoration of functionalized single-wall carbon nanotubes with phthalocyanines via "click chemistry". Campidelli S; Ballesteros B; Filoramo A; Díaz DD; de la Torre G; Torres T; Rahman GM; Ehli C; Kiessling D; Werner F; Sgobba V; Guldi DM; Cioffi C; Prato M; Bourgoin JP J Am Chem Soc; 2008 Aug; 130(34):11503-9. PubMed ID: 18661981 [TBL] [Abstract][Full Text] [Related]
11. Note: A scanning electron microscope sample holder for bidirectional characterization of atomic force microscope probe tips. Eisenstein A; Goh MC Rev Sci Instrum; 2012 Mar; 83(3):036108. PubMed ID: 22462974 [TBL] [Abstract][Full Text] [Related]
12. Nanomachining with a mechanical manipulation system. Chang M; Deka JR; Lin CH J Nanosci Nanotechnol; 2008 Dec; 8(12):6266-73. PubMed ID: 19205193 [TBL] [Abstract][Full Text] [Related]
13. A novel apparatus for in situ compression of submicron structures and particles in a high resolution SEM. Romeis S; Paul J; Ziener M; Peukert W Rev Sci Instrum; 2012 Sep; 83(9):095105. PubMed ID: 23020417 [TBL] [Abstract][Full Text] [Related]
14. Batch fabrication of atomic force microscopy probes with recessed integrated ring microelectrodes at a wafer level. Shin H; Hesketh PJ; Mizaikoff B; Kranz C Anal Chem; 2007 Jul; 79(13):4769-77. PubMed ID: 17521168 [TBL] [Abstract][Full Text] [Related]
15. Development of a quartz tuning-fork-based force sensor for measurements in the tens of nanoNewton force range during nanomanipulation experiments. Oiko VT; Martins BV; Silva PC; Rodrigues V; Ugarte D Rev Sci Instrum; 2014 Mar; 85(3):035003. PubMed ID: 24689612 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous measurement of static and kinetic friction of ZnO nanowires in situ with a scanning electron microscope. Polyakov B; Dorogin LM; Vlassov S; Kink I; Romanov AE; Lohmus R Micron; 2012 Nov; 43(11):1140-6. PubMed ID: 22341617 [TBL] [Abstract][Full Text] [Related]
17. Bioinspired superhydrophobic coatings of carbon nanotubes and linear pi systems based on the "bottom-up" self-assembly approach. Srinivasan S; Praveen VK; Philip R; Ajayaghosh A Angew Chem Int Ed Engl; 2008; 47(31):5750-4. PubMed ID: 18604864 [No Abstract] [Full Text] [Related]
18. Precise voltage contrast image assisted positioning for in situ electron beam nanolithography for nanodevice fabrication with suspended nanowire structures. Long R; Chen J; Lim JH; Wiley JB; Zhou W Nanotechnology; 2009 Jul; 20(28):285306. PubMed ID: 19546502 [TBL] [Abstract][Full Text] [Related]