These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16842784)

  • 1. Characterization of the last step of lignin biosynthesis in Zinnia elegans suspension cell cultures.
    Gabaldón C; López-Serrano M; Pomar F; Merino F; Cuello J; Pedreño MA; Barceló AR
    FEBS Lett; 2006 Aug; 580(18):4311-6. PubMed ID: 16842784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The presence of sinapyl lignin in Ginkgo biloba cell cultures changes our views of the evolution of lignin biosynthesis.
    Uzal EN; Gómez Ros LV; Pomar F; Bernal MA; Paradela A; Albar JP; Ros Barceló A
    Physiol Plant; 2009 Feb; 135(2):196-213. PubMed ID: 19055540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and molecular characterization of the basic peroxidase isoenzyme from Zinnia elegans, an enzyme involved in lignin biosynthesis.
    Gabaldón C; López-Serrano M; Pedreño MA; Barceló AR
    Plant Physiol; 2005 Nov; 139(3):1138-54. PubMed ID: 16258008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of a novel peroxidase gene ZPO-C whose expression and function are closely associated with lignification during tracheary element differentiation.
    Sato Y; Demura T; Yamawaki K; Inoue Y; Sato S; Sugiyama M; Fukuda H
    Plant Cell Physiol; 2006 Apr; 47(4):493-503. PubMed ID: 16446311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zinnia elegans uses the same peroxidase isoenzyme complement for cell wall lignification in both single-cell tracheary elements and xylem vessels.
    López-Serrano M; Fernández MD; Pomar F; Pedreño MA; Ros Barceló A
    J Exp Bot; 2004 Feb; 55(396):423-31. PubMed ID: 14739265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinformatic and functional characterization of the basic peroxidase 72 from Arabidopsis thaliana involved in lignin biosynthesis.
    Herrero J; Fernández-Pérez F; Yebra T; Novo-Uzal E; Pomar F; Pedreño MÁ; Cuello J; Guéra A; Esteban-Carrasco A; Zapata JM
    Planta; 2013 Jun; 237(6):1599-612. PubMed ID: 23508663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Looking for Arabidopsis thaliana peroxidases involved in lignin biosynthesis.
    Herrero J; Esteban-Carrasco A; Zapata JM
    Plant Physiol Biochem; 2013 Jun; 67():77-86. PubMed ID: 23545205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From Zinnia to Arabidopsis: approaching the involvement of peroxidases in lignification.
    Novo-Uzal E; Fernández-Pérez F; Herrero J; Gutiérrez J; Gómez-Ros LV; Bernal MÁ; Díaz J; Cuello J; Pomar F; Pedreño MÁ
    J Exp Bot; 2013 Sep; 64(12):3499-518. PubMed ID: 23956408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of extracellular dilignols in lignification during tracheary element differentiation of isolated Zinnia mesophyll cells.
    Tokunaga N; Sakakibara N; Umezawa T; Ito Y; Fukuda H; Sato Y
    Plant Cell Physiol; 2005 Jan; 46(1):224-32. PubMed ID: 15659440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lignin dehydrogenative polymerization mechanism: a poplar cell wall peroxidase directly oxidizes polymer lignin and produces in vitro dehydrogenative polymer rich in beta-O-4 linkage.
    Sasaki S; Nishida T; Tsutsumi Y; Kondo R
    FEBS Lett; 2004 Mar; 562(1-3):197-201. PubMed ID: 15044025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Downregulation of the basic peroxidase isoenzyme from Zinnia elegans by gibberellic acid.
    Núñez-Flores MJ; Gutiérrez J; Gómez-Ros LV; Uzal EN; Sottomayor M; Barceló AR
    J Integr Plant Biol; 2010 Feb; 52(2):244-51. PubMed ID: 20377685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.).
    Chen F; Srinivasa Reddy MS; Temple S; Jackson L; Shadle G; Dixon RA
    Plant J; 2006 Oct; 48(1):113-24. PubMed ID: 16972868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering a monolignol 4-O-methyltransferase with high selectivity for the condensed lignin precursor coniferyl alcohol.
    Cai Y; Bhuiya MW; Shanklin J; Liu CJ
    J Biol Chem; 2015 Oct; 290(44):26715-24. PubMed ID: 26378240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of basic p-coumaryl and coniferyl alcohol oxidizing peroxidases from a lignin-forming Picea abies suspension culture.
    Koutaniemi S; Toikka MM; Kärkönen A; Mustonen M; Lundell T; Simola LK; Kilpeläinen IA; Teeri TH
    Plant Mol Biol; 2005 May; 58(2):141-57. PubMed ID: 16027971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of
    García-Ulloa A; Sanjurjo L; Cimini S; Encina A; Martínez-Rubio R; Bouza R; Barral L; Estévez-Pérez G; Novo-Uzal E; De Gara L; Pomar F
    Front Plant Sci; 2020; 11():900. PubMed ID: 32676088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis.
    Gang DR; Costa MA; Fujita M; Dinkova-Kostova AT; Wang HB; Burlat V; Martin W; Sarkanen S; Davin LB; Lewis NG
    Chem Biol; 1999 Mar; 6(3):143-51. PubMed ID: 10074466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishing in vitro Zinnia elegans cell suspension culture with high tracheary element differentiation.
    Twumasi P; Schel JH; van Ieperen W; Woltering E; Van Kooten O; Emons AM
    Cell Biol Int; 2009 Apr; 33(4):524-33. PubMed ID: 19232395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability.
    Grabber JH; Schatz PF; Kim H; Lu F; Ralph J
    BMC Plant Biol; 2010 Jun; 10():114. PubMed ID: 20565789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hormonal regulation of the basic peroxidase isoenzyme from Zinnia elegans.
    Gutiérrez J; López Núñez-Flores MJ; Gómez-Ros LV; Novo Uzal E; Esteban Carrasco A; Díaz J; Sottomayor M; Cuello J; Ros Barceló A
    Planta; 2009 Sep; 230(4):767-78. PubMed ID: 19626339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The promoter region of the Zinnia elegans basic peroxidase isoenzyme gene contains cis-elements responsive to nitric oxide and hydrogen peroxide.
    Gómez-Ros LV; Gabaldón C; López Núñez-Flores MJ; Gutiérrez J; Herrero J; Zapata JM; Sottomayor M; Cuello J; Ros Barceló A
    Planta; 2012 Aug; 236(2):327-42. PubMed ID: 22362137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.