These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 1684287)

  • 21. Regulation of floral patterning and organ identity by Arabidopsis ERECTA-family receptor kinase genes.
    Bemis SM; Lee JS; Shpak ED; Torii KU
    J Exp Bot; 2013 Dec; 64(17):5323-33. PubMed ID: 24006425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unique morphological changes in plant pathogenic phytoplasma-infected petunia flowers are related to transcriptional regulation of floral homeotic genes in an organ-specific manner.
    Himeno M; Neriya Y; Minato N; Miura C; Sugawara K; Ishii Y; Yamaji Y; Kakizawa S; Oshima K; Namba S
    Plant J; 2011 Sep; 67(6):971-9. PubMed ID: 21605209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interactions between FLORAL ORGAN NUMBER4 and floral homeotic genes in regulating rice flower development.
    Xu W; Tao J; Chen M; Dreni L; Luo Z; Hu Y; Liang W; Zhang D
    J Exp Bot; 2017 Jan; 68(3):483-498. PubMed ID: 28204535
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis.
    Pnueli L; Abu-Abeid M; Zamir D; Nacken W; Schwarz-Sommer Z; Lifschitz E
    Plant J; 1991 Sep; 1(2):255-66. PubMed ID: 1688249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulatory mechanisms for floral homeotic gene expression.
    Liu Z; Mara C
    Semin Cell Dev Biol; 2010 Feb; 21(1):80-6. PubMed ID: 19922812
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Co-ordination of Flower Development Through Epigenetic Regulation in Two Model Species: Rice and Arabidopsis.
    Guo S; Sun B; Looi LS; Xu Y; Gan ES; Huang J; Ito T
    Plant Cell Physiol; 2015 May; 56(5):830-42. PubMed ID: 25746984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower.
    Melzer R; Wang YQ; Theissen G
    Semin Cell Dev Biol; 2010 Feb; 21(1):118-28. PubMed ID: 19944177
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overexpression of a flower-specific aerolysin-like protein from the dioecious plant Rumex acetosa alters flower development and induces male sterility in transgenic tobacco.
    Manzano S; Megías Z; Martínez C; García A; Aguado E; Chileh T; López-Alonso D; García-Maroto F; Kejnovský E; Široký J; Kubát Z; Králová T; Vyskot B; Jamilena M
    Plant J; 2017 Jan; 89(1):58-72. PubMed ID: 27599169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pedicel development in Arabidopsis thaliana: contribution of vascular positioning and the role of the BREVIPEDICELLUS and ERECTA genes.
    Douglas SJ; Riggs CD
    Dev Biol; 2005 Aug; 284(2):451-63. PubMed ID: 16038894
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coordination of flower development by homeotic master regulators.
    Ito T
    Curr Opin Plant Biol; 2011 Feb; 14(1):53-9. PubMed ID: 20869907
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitochondrial regulation of flower development.
    Carlsson J; Leino M; Sohlberg J; Sundström JF; Glimelius K
    Mitochondrion; 2008 Jan; 8(1):74-86. PubMed ID: 18054525
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum.
    Ingram GC; Goodrich J; Wilkinson MD; Simon R; Haughn GW; Coen ES
    Plant Cell; 1995 Sep; 7(9):1501-10. PubMed ID: 8589630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE genes/microRNA156 module by the homeodomain proteins PENNYWISE and POUND-FOOLISH in Arabidopsis.
    Lal S; Pacis LB; Smith HM
    Mol Plant; 2011 Nov; 4(6):1123-32. PubMed ID: 21653282
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development.
    Vandenbussche M; Zethof J; Royaert S; Weterings K; Gerats T
    Plant Cell; 2004 Mar; 16(3):741-54. PubMed ID: 14973163
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Floral traits influence pollen vectors' choices in higher elevation communities in the Himalaya-Hengduan Mountains.
    Zhao YH; Ren ZX; Lázaro A; Wang H; Bernhardt P; Li HD; Li DZ
    BMC Ecol; 2016 May; 16():26. PubMed ID: 27221235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Invasion of a dominant floral resource: effects on the floral community and pollination of native plants.
    Goodell K; Parker IM
    Ecology; 2017 Jan; 98(1):57-69. PubMed ID: 28052387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ROSINA (RSI), a novel protein with DNA-binding capacity, acts during floral organ development in Antirrhinum majus.
    Roccaro M; Li Y; Masiero S; Saedler H; Sommer H
    Plant J; 2005 Jul; 43(2):238-50. PubMed ID: 15998310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development.
    Davies B; Motte P; Keck E; Saedler H; Sommer H; Schwarz-Sommer Z
    EMBO J; 1999 Jul; 18(14):4023-34. PubMed ID: 10406807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Time to flower: interplay between photoperiod and the circadian clock.
    Johansson M; Staiger D
    J Exp Bot; 2015 Feb; 66(3):719-30. PubMed ID: 25371508
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Open and closed inflorescences: more than simple opposites.
    Bull-Hereñu K; Classen-Bockhoff R
    J Exp Bot; 2011 Jan; 62(1):79-88. PubMed ID: 20798000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.